ﻻ يوجد ملخص باللغة العربية
Using the $hbar$-expansion of the Greens function of the Hartree-Fock-Bogoliubov equation, we extend the second-order Thomas-Fermi approximation to generalized superfluid Fermi systems by including the density-dependent effective mass and the spin-orbit potential. We first implement and examine the full correction terms over different energy intervals of the quasiparticle spectra in calculations of finite nuclei. Final applications of this generalized Thomas-Fermi method are intended for various inhomogeneous superfluid Fermi systems.
We determine the energy density $xi (3/5) n epsilon_F$ and the gradient correction $lambda hbar^2( abla n)^2/(8m n)$ of the extended Thomas-Fermi (ETF) density functional, where $n$ is number density and $epsilon_F$ is Fermi energy, for a trapped two
We show that the contributions of three-quasiparticle interactions to normal Fermi systems at low energies and temperatures are suppressed by n_q/n compared to two-body interactions, where n_q is the density of excited or added quasiparticles and n i
Using effective field theory methods, we calculate for the first time the complete fourth-order term in the Fermi-momentum or $k_{rm F} a_s$ expansion for the ground-state energy of a dilute Fermi gas. The convergence behavior of the expansion is exa
I discuss the advantages and disadvantages of several procedures, some known and some new, for constructing stationary states within the mean field approximation for a system with pairing correlations and unequal numbers spin-up and spin-down fermion
The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentu