ترغب بنشر مسار تعليمي؟ اضغط هنا

Paramagnetic structure for the soliton of the $30^circ$ partial dislocation in silicon

98   0   0.0 ( 0 )
 نشر من قبل T. A. Arias
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on ab initio calculation, we propose a new structure for the fundamental excitation of the reconstructed 30$^circ$ partial dislocation in silicon. This soliton has a rare structure involving a five-fold coordinated atom near the dislocation core. The unique electronic structure of this defect is consistent with the electron spin resonance signature of the hitherto enigmatic thermally stable R center of plastically deformed silicon. This identification suggests the possibility of an experimental determination of the density of solitons, a key defect in understanding the plastic flow of the material.

قيم البحث

اقرأ أيضاً

30$^{circ}$ twisted bilayer graphene demonstrates the quasicrystalline electronic states with 12-fold symmetry. These states are however far away from the Fermi level, which makes conventional Dirac fermion behavior dominating the low energy spectrum in this system. By using tight-binding approximation, we study the effect of external pressure and electric field on the quasicrystalline electronic states. Our results show that by applying the pressure perpendicular to graphene plane one can push the quasicrystalline electronic states towards the Fermi level. Then, the electron or hole doping of the order of $sim$ $4times10^{14}$ $cm^{-2}$ is sufficient for the coincidence of the Fermi level with these quasicrystalline states. Moreover, our study indicates that applying the electric field perpendicular to the graphene plane can destroy the 12-fold symmetry of these states and break the energy degeneracy of the 12-wave states, and it is easier to reach this in the conduction band than in the valence band. Importantly, the application of the pressure can recover the 12-fold symmetry of these states to some extent against the electric field. We propose a hybridization picture which can explain all these phenomena.
The structure and mobility of dislocations in the layered semiconductor InSe is studied within a multiscale approach based on generalized Peierls--Nabarro model with material-specific parametrization derived from first principles. The plasticity of I nSe turns out to be attributed to peculiarities of the generalized stacking fault relief for the interlayer dislocation slips such as existence of the stacking fault with a very low energy and low energy barriers. Our results give a consistent microscopic explanation of recently observed [Science {bf 369}, 542 (2020)] exceptional plasticity of InSe.
The neutrally-charged silicon vacancy in diamond is a promising system for quantum technologies that combines high-efficiency, broadband optical spin polarization with long spin lifetimes (T2 ~ 1 ms at 4 K) and up to 90% of optical emission into its 946 nm zero-phonon line. However, the electronic structure of SiV0 is poorly understood, making further exploitation difficult. Performing photoluminescence spectroscopy of SiV0 under uniaxial stress, we find the previous excited electronic structure of a single 3A1u state is incorrect, and identify instead a coupled 3Eu - 3A2u system, the lower state of which has forbidden optical emission at zero stress and so efficiently decreases the total emission of the defect: we propose a solution employing finite strain to form the basis of a spin-photon interface. Isotopic enrichment definitively assigns the 976 nm transition associated with the defect to a local mode of the silicon atom.
X-ray absorption spectroscopy (XAS) is one of the most widely used experimental techniques to study the electronic and spatial structure of materials. Fluorescence yield mode is bulk-sensitive, but has several serious problems coming from saturation effects. In this study, we show the usefulness of partial fluorescence yields in addressing these problems. We discuss the different behaviors of La2NiMnO6 and LiMnO2 at the Mn 2p absorption edges. The total fluorescence yield produces misleading spectra for LiMnO2 due to the absence of high-Z (Z: atomic number) elements. We conclude that the measurement of the inverse partial fluorescence yield is essential in studies of LiMnO2, which is a hotly debated Li-ion battery material.
The negatively-charged silicon-vacancy (SiV$^-$) center in diamond is a promising single photon source for quantum communications and information processing. However, the centers implementation in such quantum technologies is hindered by contention s urrounding its fundamental properties. Here we present optical polarization measurements of single centers in bulk diamond that resolve this state of contention and establish that the center has a $langle111rangle$ aligned split-vacancy structure with $D_{3d}$ symmetry. Furthermore, we identify an additional electronic level and evidence for the presence of dynamic Jahn-Teller effects in the centers 738 nm optical resonance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا