ﻻ يوجد ملخص باللغة العربية
30$^{circ}$ twisted bilayer graphene demonstrates the quasicrystalline electronic states with 12-fold symmetry. These states are however far away from the Fermi level, which makes conventional Dirac fermion behavior dominating the low energy spectrum in this system. By using tight-binding approximation, we study the effect of external pressure and electric field on the quasicrystalline electronic states. Our results show that by applying the pressure perpendicular to graphene plane one can push the quasicrystalline electronic states towards the Fermi level. Then, the electron or hole doping of the order of $sim$ $4times10^{14}$ $cm^{-2}$ is sufficient for the coincidence of the Fermi level with these quasicrystalline states. Moreover, our study indicates that applying the electric field perpendicular to the graphene plane can destroy the 12-fold symmetry of these states and break the energy degeneracy of the 12-wave states, and it is easier to reach this in the conduction band than in the valence band. Importantly, the application of the pressure can recover the 12-fold symmetry of these states to some extent against the electric field. We propose a hybridization picture which can explain all these phenomena.
In this paper, the electronic properties of 30{deg} twisted double bilayer graphene, which loses the translational symmetry due to the incommensurate twist angle, are studied by means of the tight-binding approximation. We demonstrate the interlayer
Graphene-based moir{e} systems have attracted considerable interest in recent years as they display a remarkable variety of correlated phenomena. Besides insulating and superconducting phases in the vicinity of integer fillings of the moir{e} unit ce
Layers of twisted bilayer graphene exhibit varieties of exotic quantum phenomena1-5. Today, the twist angle {Theta} has become an important degree of freedom for exploring novel states of matters, i.e. two-dimensional superconductivity ( {Theta} = 1.
The discovery of interaction-driven insulating and superconducting phases in moire van der Waals heterostructures has sparked considerable interest in understanding the novel correlated physics of these systems. While a significant number of studies
The artificial stacking of atomically thin crystals suffers from intrinsic limitations in terms of control and reproducibility of the relative orientation of exfoliated flakes. This drawback is particularly severe when the properties of the system cr