ﻻ يوجد ملخص باللغة العربية
We examine the sources of error in the histogram reweighting method for Monte Carlo data analysis. We demonstrate that, in addition to the standard statistical error which has been studied elsewhere, there are two other sources of error, one arising through correlations in the reweighted samples, and one arising from the finite range of energies sampled by a simulation of finite length. We demonstrate that while the former correction is usually negligible by comparison with statistical fluctuations, the latter may not be, and give criteria for judging the range of validity of histogram extrapolations based on the size of this latter correction.
The diagrammatic Monte Carlo (Diag-MC) method is a numerical technique which samples the entire diagrammatic series of the Greens function in quantum many-body systems. In this work, we incorporate the flat histogram principle in the diagrammatic Mon
We study the performance of Monte Carlo simulations that sample a broad histogram in energy by determining the mean first-passage time to span the entire energy space of d-dimensional ferromagnetic Ising/Potts models. We first show that flat-histogra
We discuss the detailed balance condition for hybrid Monte Carlo method
While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the abscence of a reliable way to estimate that error. The standa
We present a method for Monte Carlo sampling on systems with discrete variables (focusing in the Ising case), introducing a prior on the candidate moves in a Metropolis-Hastings scheme which can significantly reduce the rejection rate, called the red