ﻻ يوجد ملخص باللغة العربية
We present a method for Monte Carlo sampling on systems with discrete variables (focusing in the Ising case), introducing a prior on the candidate moves in a Metropolis-Hastings scheme which can significantly reduce the rejection rate, called the reduced-rejection-rate (RRR) method. The method employs same probability distribution for the choice of the moves as rejection-free schemes such as the method proposed by Bortz, Kalos and Lebowitz (BKL) [Bortz et al. J.Comput.Phys. 1975]; however, it uses it as a prior in an otherwise standard Metropolis scheme: it is thus not fully rejection-free, but in a wide range of scenarios it is nearly so. This allows to extend the method to cases for which rejection-free schemes become inefficient, in particular when the graph connectivity is not sparse, but the energy can nevertheless be expressed as a sum of two components, one of which is computed on a sparse graph and dominates the measure. As examples of such instances, we demonstrate that the method yields excellent results when performing Monte Carlo simulations of quantum spin models in presence of a transverse field in the Suzuki-Trotter formalism, and when exploring the so-called robust ensemble which was recently introduced in Baldassi et al. [PNAS 2016]. Our code for the Ising case is publicly available [https://github.com/carlobaldassi/RRRMC.jl], and extensible to user-defined models: it provides efficient implementations of standard Metropolis, the RRR method, the BKL method (extended to the case of continuous energy specra), and the waiting time method [Dall and Sibani Comput.Phys.Commun. 2001].
The inverse problem for a disordered system involves determining the interparticle interaction parameters consistent with a given set of experimental data. Recently, Rutledge has shown (Phys. Rev. E63, 021111 (2001)) that such problems can be general
The cavity method is a well established technique for solving classical spin models on sparse random graphs (mean-field models with finite connectivity). Laumann et al. [arXiv:0706.4391] proposed recently an extension of this method to quantum spin-1
Population annealing is a recent addition to the arsenal of the practitioner in computer simulations in statistical physics and beyond that is found to deal well with systems with complex free-energy landscapes. Above all else, it promises to deliver
We propose a minimal generalization of the celebrated Markov-Chain Monte Carlo algorithm which allows for an arbitrary number of configurations to be visited at every Monte Carlo step. This is advantageous when a parallel computing machine is availab
The diagrammatic Monte Carlo (Diag-MC) method is a numerical technique which samples the entire diagrammatic series of the Greens function in quantum many-body systems. In this work, we incorporate the flat histogram principle in the diagrammatic Mon