ترغب بنشر مسار تعليمي؟ اضغط هنا

Size induced metal insulator transition in nanostructured Niobium thin films: Intragranular and intergranular contributions

74   0   0.0 ( 0 )
 نشر من قبل Sangita Bose
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With a reduction in the average grain size in nanostructured films of elemental Nb, we observe a systematic crossover from metallic to weakly-insulating behavior. An analysis of the temperature dependence of the resistivity in the insulating phase clearly indicates the existence of two distinct activation energies corresponding to inter-granular and intra-granular mechanisms of transport. While the high temperature behavior is dominated by grain boundary scattering of the conduction electrons, the effect of discretization of energy levels due to quantum confinement shows up at low temperatures. We show that the energy barrier at the grain boundary is proportional to the width of the largely disordered inter-granular region, which increases with a decrease in the grain size. For a metal-insulator transition to occur in nano-Nb due to the opening up of an energy gap at the grain boundary, the critical grain size is ~ 8nm and the corresponding grain boundary width is ~ 1.1nm.

قيم البحث

اقرأ أيضاً

Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topolo gical crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and thus to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak antilocalization and the weak links of the SQUID fully-gapped proximity induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2$pi$ periodicity, possibly dominated by the bulk conductivity.
Amorphous vanadium dioxide (VO$_{2}$) films deposited by atomic layer deposition (ALD) were crystallized with an ex situ anneal at 660-670 ${deg}$C for 1-2 hours under a low oxygen pressure (10$^{-4}$ to 10$^{-5}$ Torr). Under these conditions the cr ystalline VO$_{2}$ phase was maintained, while formation of the V$_{2}$O$_{5}$ phase was suppressed. Electrical transition from the insulator to the metallic phase was observed in the 37-60 ${deg}$C range, with a R$_{ON}$/R$_{OFF}$ ratio of up to about 750 and critical transition temperature of 7-10 ${deg}$C. Electric field applied across two-terminal device structures induced a reversible phase change, with a room temperature transition field of about 25 kV/cm in the VO$_{2}$ sample processed with the 2 hr long anneal. Both the width and slope of the field induced MIT hysteresis were dependent upon the VO$_{2}$ crystalline quality.
We develop a minimal theory for the recently observed metal-insulator transition (MIT) in two-dimensional (2D) moire multilayer transition metal dichalcogenides (mTMD) using Coulomb disorder in the environment as the underlying mechanism. In particul ar, carrier scattering by random charged impurities leads to an effective 2D MIT approximately controlled by the Ioffe-Regel criterion, which is qualitatively consistent with the experiments. We find the necessary disorder to be around $5$-$10times10^{10}$cm$^{-2}$ random charged impurities in order to quantitatively explain much, but not all, of the observed MIT phenomenology as reported by two different experimental groups. Our estimate is consistent with the known disorder content in TMDs.
We have investigated the temperature driven first order metal-insulator (M-I) transition in thin films of NdNiO$_3$ and have compared it with the bulk behavior. The M-I transition of thin films is sensitive to epitaxial strain and a partial relaxatio n of epitaxial strain creates an inhomogeneous strain field in the films which broadens the M-I transition. Both the thin film and the bulk samples exhibit non equilibrium features in the transition regime which are attributed to the presence of high temperature metallic phases in their supercooled state. The degree of supercooling in the thin films is found to be much smaller than in the bulk which suggests that the metal insulator transition in the thin film occurs through heterogeneous nucleation.
Recently, a logarithmic decrease of conductivity has been observed in topological insulators at low temperatures, implying a tendency of localization of surface electrons. Here, we report quantum transport experiments on the topological insulator Bi2 Te3 thin films with arrayed antidot nanostructures. With increasing density of the antidots, a systematic decrease is observed in the slope of the logarithmic temperature-dependent conductivity curves, indicating the electron-electron interaction can be tuned by the antidots. Meanwhile, the weak anti-localization effect revealed in magnetoconductivity exhibits an enhanced dominance of electron-electron interaction among decoherence mechanisms. The observation can be understood from an antidot-induced reduction of the effective dielectric constant, which controls the interactions between the surface electrons. Our results clarify the indispensable role of the electron-electron interaction in the localization of surface electrons and indicate the localization of surface electrons in an interacting topological insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا