ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterogeneous nucleation and metal-insulator transition in epitaxial films of NdNiO$_3$

125   0   0.0 ( 0 )
 نشر من قبل Devendra Kumar
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have investigated the temperature driven first order metal-insulator (M-I) transition in thin films of NdNiO$_3$ and have compared it with the bulk behavior. The M-I transition of thin films is sensitive to epitaxial strain and a partial relaxation of epitaxial strain creates an inhomogeneous strain field in the films which broadens the M-I transition. Both the thin film and the bulk samples exhibit non equilibrium features in the transition regime which are attributed to the presence of high temperature metallic phases in their supercooled state. The degree of supercooling in the thin films is found to be much smaller than in the bulk which suggests that the metal insulator transition in the thin film occurs through heterogeneous nucleation.



قيم البحث

اقرأ أيضاً

The origin of simultaneous electronic, structural and magnetic transitions in bulk rare-earth nickelates ($RE$NiO$_3$) remains puzzling with multiple conflicting reports on the nature of these entangled phase transitions. Heterostructure engineering of these materials offers unique opportunity to decouple metal-insulator transition (MIT) from the magnetic transition. However, the evolution of underlying electronic properties across these decoupled transitions remains largely unexplored. In order to address this, we have measured Hall effect on a series of epitaxial NdNiO$_3$ films, spanning a variety of electronic and magnetic phases. We find that the MIT results in only partially gapped Fermi surface, whereas full insulating phase forms below the magnetic transition. In addition, we also find a systematic reduction of the Hall coefficient ($R_H$) in the metallic phase of these films with epitaxial strain and also a surprising transition to negative value at large compressive strain. Partially gapped weakly insulating, paramagnetic phase is reminiscence of pseudogap behavior of high $T_c$ cuprates. The precursor metallic phase, which undergoes transition to insulating phase is a non-Fermi liquid with the temperature exponent ($n$) of resistivity of 1, whereas the exponent increases to 4/3 in the non-insulating samples. Such nickelate phase diagram with sign-reversal of $R_H$, pseudo-gap phase and non Fermi liquid behavior are intriguingly similar to high $T_c$ cuprates, giving important guideline to engineer unconventional superconductivity in oxide heterostructure.
Heteroepitaxy offers a new type of control mechanism for the crystal structure, the electronic correlations, and thus the functional properties of transition-metal oxides. Here, we combine electrical transport measurements, high-resolution scanning t ransmission electron microscopy (STEM), and density functional theory (DFT) to investigate the evolution of the metal-to-insulator transition (MIT) in NdNiO$_3$ films as a function of film thickness and NdGaO$_3$ substrate crystallographic orientation. We find that for two different substrate facets, orthorhombic (101) and (011), modifications of the NiO$_6$ octahedral network are key for tuning the transition temperature $T_{text{MIT}}$ over a wide temperature range. A comparison of films of identical thickness reveals that growth on [101]-oriented substrates generally results in a higher $T_{text{MIT}}$, which can be attributed to an enhanced bond-disproportionation as revealed by the DFT+$U$ calculations, and a tendency of [011]-oriented films to formation of structural defects and stabilization of non-equilibrium phases. Our results provide insights into the structure-property relationship of a correlated electron system and its evolution at microscopic length scales and give new perspectives for the epitaxial control of macroscopic phases in metal-oxide heterostructures.
138 - K.H.L Zhang , Y. Du , P. V. Sushko 2015
We have investigated the evolution of the electronic properties of La1-xSrxCrO3 (for the full range of x) epitaxial films deposited by molecular beam epitaxy (MBE) using x-ray diffraction, x-ray photoemission spectroscopy, Rutherford backscattering s pectrometry, x-ray absorption spectroscopy, electrical transport, and ab initio modeling. LaCrO3 is an antiferromagnetic insulator whereas SrCrO3 is a metal. Substituting Sr2+ for La3+ in LaCrO3 effectively dopes holes into the top of valence band, leading to Cr4+ (3d2) local electron configurations. Core-level and valence-band features monotonically shift to lower binding energy with increasing x, indicating downward movement of the Fermi level toward the valence band maximum. The material becomes a p-type semiconductor at lower doping levels and an insulator-to-metal transition is observed at x greater than or equal to 0.65, but only when the films are deposited with in-plane compression via lattice-mismatched heteroepitaxy. Valence band x-ray photoemission spectroscopy reveals diminution of electronic state density at the Cr 3d t2g-derived top of the valence band while O K-edge x-ray absorption spectroscopy shows the development of a new unoccupied state above the Fermi level as holes are doped into LaCrO3. The evolution of these bands with Sr concentration is accurately captured using density functional theory with a Hubbard U correction of 3.0 eV (DFT + U). Resistivity data in the semiconducting regime (x less than or equal to 0.50) do not fit perfectly well to either a polaron hopping or band conduction model, but are best interpreted in terms of a hybrid model. The activation energies extracted from these fits are well reproduced by DFT + U.
173 - Jian Liu , M. Kareev , B. Gray 2010
We have synthesized epitaxial NdNiO$_{3}$ ultra-thin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO$_{3}$ (001) and LaAlO$_3$ (001), respectively. A combination of X-ray diffraction, temperature dependent resistiv ity, and soft X-ray absorption spectroscopy has been applied to elucidate electronic and structural properties of the samples. In contrast to the bulk NdNiO$_{3}$, the metal-insulator transition under compressive strain is found to be completely quenched, while the transition remains under the tensile strain albeit modified from the bulk behavior.
Understanding of the metal-insulator transition (MIT) in correlated transition-metal oxides is a fascinating topic in condensed matter physics and a precise control of such transitions plays a key role in developing novel electronic devices. Here we report an effective tuning of the MIT in epitaxial SrVO3 (SVO) films by expanding the out-of-plane lattice constant without changing in-plane lattice parameters, through helium ion irradiation. Upon increase of the ion fluence, we observe a MIT with a crossover from metallic to insulating state in SVO films. A combination of transport and magnetoresistance measurements in SVO at low temperatures reveals that the observed MIT is mainly ascribed to electron-electron interactions rather than disorder-induced localization. Moreover, these results are well supported by the combination of density functional theory and dynamical mean field theory (DFT+DMFT) calculations, further confirming the decrease of the bandwidth and the enhanced electron-electron interactions resulting from the expansion of out-of-plane lattice constant. These findings provide new insights into the understanding of MIT in correlated oxides and perspectives for the design of unexpected functional devices based on strongly correlated electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا