ترغب بنشر مسار تعليمي؟ اضغط هنا

Wetting Phase Transition at the Surface of Liquid Ga-Bi alloys: An X-ray Reflectivity Study

134   0   0.0 ( 0 )
 نشر من قبل Oleg Shpyrko
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray reflectivity measurements of the binary liquid Ga-Bi alloy reveal a dramatically different surface structure above and below the monotectic temperature $T_{mono}=222^{circ}$ C. A Gibbs-adsorbed Bi monolayer resides at the surface at both regimes. However, a 30 {AA} thick, Bi-rich wetting film intrudes between the Bi monolayer and the Ga-rich bulk for $T > T_{mono}$. The internal structure of the wetting film is determined with {AA} resolution, showing a theoretically unexpected concentration gradient and a highly diffuse interface with the bulk phase.

قيم البحث

اقرأ أيضاً

We present x-ray reflectivity measurements from the free surface of a liquid gallium-bismuth alloy (Ga-Bi) in the temperature range close to the bulk monotectic temperature $T_{mono} = 222$C. Our measurements indicate a continuous formation of a thic k wetting film at the free surface of the binary system driven by the first order transition in the bulk at the monotectic point. We show that the behavior observed is that of a complete wetting at a tetra point of solid-liquid-liquid-vapor coexistance.
Resonant x-ray reflectivity measurements from the surface of liquid Bi22In78 find only a modest surface Bi enhancement, with 35 atomic % Bi in the first atomic layer. This is in contrast to the Gibbs adsorption in all liquid alloys studied to date, w hich show surface segregation of a complete monolayer of the low surface tension component. This suggests that surface adsorption in Bi-In is dominated by attractive interactions that increase the number of Bi-In neighbors at the surface. These are the first measurements in which resonant x-ray scattering has been used to quantify compositional changes induced at a liquid alloy surface.
We present x-ray reflectivity and diffuse scattering measurements from the liquid surface of pure potassium. They strongly suggest the existence of atomic layering at the free surface of a pure liquid metal with low surface tension. Prior to this stu dy, layering was observed only for metals like Ga, In and Hg, the surface tensions of which are 5-7 fold higher than that of potassium, and hence closer to inducing an ideal hard wall boundary condition. The experimental result requires quantitative analysis of the contribution to the surface scattering from thermally excited capillary waves. Our measurements confirm the predicted form for the differential cross section for diffuse scattering, $dsigma /dOmega sim 1/q_{xy}^{2-eta}$ where $eta = k_BT q_z^2/2pi gamma $, over a range of $eta$ and $q_{xy}$ that is larger than any previous measurement. The partial measure of the surface structure factor that we obtained agrees with computer simulations and theoretical predictions.
Surface sensitive x-ray scattering techniques with atomic scale resolution are employed to investigate the microscopic structure of the surface of three classes of liquid binary alloys: (i) Surface segregation in partly miscible binary alloys as pred icted by the Gibbs adsorption rule is investigated for Ga-In. The first layer consists of a supercooled In monolayer and the bulk composition is reached after about two atomic diameters. (ii) The Ga-Bi system displays a wetting transition at a characteristic temperature T_w~220 C. The transition from a Bi monolayer on Ga below T_w to a thick Bi-rich wetting film above T_w is studied. (iii) The effect of attractive interactions between the two components of a binary alloy on the surface structure is investigated for two Hg-Au alloys.
Measurements of the surface x-ray scattering from several pure liquid metals (Hg, Ga, and In) and from three alloys (Ga-Bi, Bi-In, and K-Na) with different heteroatomic chemical interactions in the bulk phase are reviewed. Surface-induced layering is found for each elemental liquid metal. The surface structure of the K-Na alloy resembles that of an elemental liquid metal. Bi-In displays pair formation at the surface. Surface segregation and a wetting film are found for Ga-Bi.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا