ﻻ يوجد ملخص باللغة العربية
In the present work the multiband p-d model for $CuO_2$-layer is treated. It was shown that for the realistic set of parameters besides Zhang-Rice two-particle singlet there is non-negligible contribution of two-particle triplet state to the top of the valence band. Also shown, that to gain quantitative agreement with experimental data the minimal approximation should include the spin fluctuations beyond the Hubbard-I scheme. Quasiparticle spectrum, obtained in this approximation, is in fairly good agreement with ARPES data on Bi2212 High-$T_c$ compound.
Polarized- and unpolarized-neutron scattering measurements of the spin excitation spectrum in the stripe-ordered phase of La2NiO4+d (d = 0.11) are presented. At low energies, the magnetic spectral weight is found to shift anomalously towards the two-
In cuprate superconductors, superconductivity appears below the CDW transition temperature $T_{CDW}$. However, many-body electronic states under the CDW order are still far from understood. Here, we study the development of the spin fluctuations unde
The rich phenomenology of twisted bilayer graphene (TBG) near the magic angle is believed to arise from electron correlations in topological flat bands. An unbiased approach to this problem is highly desirable, but also particularly challenging, give
Spin-triplet superconductors are of extensive current interest because they can host topological state and Majorana ferimons important for quantum computation. The uranium based heavyfermion superconductor UTe$_2$ has been argued as a spin-triplet su
Neutron scattering can provide detailed information about the energy and momentum dependence of the magnetic dynamics of materials provided sufficiently large single crystals are available. This requirement has limited the number of rare earth high t