ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Function in Mott Insulating Surfaces

80   0   0.0 ( 0 )
 نشر من قبل Luis Manuel
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show theoretically the fingerprints of short-range spiral magnetic correlations in the photoemission spectra of the Mott insulating ground states realized in the triangular silicon surfaces K/Si(111)-B and SiC(0001). The calculated spectra present low energy features of magnetic origin with a reduced dispersion ~10-40 meV compared with the center-of-mass spectra bandwidth ~0.2-0:3 eV. Remarkably, we find that the quasiparticle signal survives only around the magnetic Goldstone modes. Our findings would position these silicon surfaces as new candidates to investigate non-conventional quasiparticle excitations.

قيم البحث

اقرأ أيضاً

We study the spectral function of two-leg Hubbard ladders with the time-dependent density matrix renormalization group method (tDMRG). The high-resolution spectrum displays features of spin-charge separation and a scattering continuum of excitations with coherent bands of bound states `leaking from it. As the inter-leg hopping is increased, the continuum in the bonding channel moves to higher energies and spinon and holon branches merge into a single coherent quasi-particle band. Simultaneously, the spectrum undergoes a crossover from a regime with two minima at incommensurate values of $k_x$ (a Mott insulator), to one with a single minimum at $k_x=pi$ (a band insulator). We identify the presence of a continuum of scattering states consisting of a triplon and a polaron. We analyze the processes leading to quasiparticle formation by studying the time evolution of charge and spin degrees of freedom in real space after the hole is created. At short times, incoherent holons and spinons are emitted but after a characteristic time $tau$ charge and spin form polarons that propagate coherently.
Identifying and characterizing the parent phases of iron-based superconductors is an important step towards understanding the mechanism for their high temperature superconductivity. We present an investigation into the magnetic interactions in the Mo tt insulator La2O2Fe2OSe2. This iron oxyselenide adopts a 2-k magnetic structure with low levels of magnetic frustration. This magnetic ground state is found to be dominated by next-nearest neighbor interactions J2 and J2 and the magnetocrystalline anisotropy of the Fe2+ site, leading to 2D-Ising-like spin S=2 fluctuations. In contrast to calculations, the values are small and confine the spin excitations below ~ 25 meV. This is further corroborated by sum rules of neutron scattering. This indicates that superconductivity in related materials may derive from a weakly coupled and unfrustrated magnetic structure.
Magnetism in transition-metal compounds (TMCs) has traditionally been associated with spin degrees of freedom, because the orbital magnetic moments are typically largely quenched. On the other hand, magnetic order in 4f- and 5d-electron systems arise s from spin and orbital moments that are rigidly tied together by the large intra-atomic spin-orbit coupling (SOC). Using inelastic neutron scattering on the archetypal 4d-electron Mott insulator Ca$_2$RuO$_4$, we report a novel form of excitonic magnetism in the intermediate-strength regime of the SOC. The magnetic order is characterized by ``soft magnetic moments with large amplitude fluctuations manifested by an intense, low-energy excitonic mode analogous to the Higgs mode in particle physics. This mode heralds a proximate quantum critical point separating the soft magnetic order driven by the superexchange interaction from a quantum-paramagnetic state driven by the SOC. We further show that this quantum critical point can be tuned by lattice distortions, and hence may be accessible in epitaxial thin-film structures. The unconventional spin-orbital-lattice dynamics in Ca$_2$RuO$_4$ identifies the SOC as a novel source of quantum criticality in TMCs.
90 - O. Ivashko , M. Horio , W. Wan 2018
The transition temperature $T_textrm{c}$ of unconventional superconductivity is often tunable. For a monolayer of FeSe, for example, the sweet spot is uniquely bound to titanium-oxide substrates. By contrast for La$_{2-mathrm{x}}$Sr$_mathrm{x}$CuO$_4 $ thin films, such substrates are sub-optimal and the highest $T_textrm{c}$ is instead obtained using LaSrAlO$_4$. An outstanding challenge is thus to understand the optimal conditions for superconductivity in thin films: which microscopic parameters drive the change in $T_mathrm{c}$ and how can we tune them? Here we demonstrate, by a combination of x-ray absorption and resonant inelastic x-ray scattering spectroscopy, how the Coulomb and magnetic-exchange interaction of La$_2$CuO$_4$ thin films can be enhanced by compressive strain. Our experiments and theoretical calculations establish that the substrate producing the largest $T_textrm{c}$ under doping also generates the largest nearest neighbour hopping integral, Coulomb and magnetic-exchange interaction. We hence suggest optimising the parent Mott state as a strategy for enhancing the superconducting transition temperature in cuprates.
Cation displacements, oxygen octahedral tilts, and magnetism of epitaxial, ferrimagnetic, insulating GdTiO3 films sandwiched between cubic SrTiO3 layers are studied using scanning transmission electron microscopy and magnetization measurements. With decreasing GdTiO3 film thickness, structural (GdFeO3-type) distortions are reduced, concomitant with a reduction in the Curie temperature. Ferromagnetism persists to smaller deviations from the cubic perovskite structure than is the case for the bulk rare earth titanates. The results indicate that the FM ground state is controlled by the narrow bandwidth, exchange and orbital ordering, and only to second order depends on amount of the GdFeO3-type distortion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا