ترغب بنشر مسار تعليمي؟ اضغط هنا

Stroboscopic optical observations of the Crab pulsar

91   0   0.0 ( 0 )
 نشر من قبل Simon Vidrih
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Simon Vidrih




اسأل ChatGPT حول البحث

Photometric data of the Crab pulsar, obtained in stroboscopic mode over a period of more than eight years, are presented here. The applied Fourier analysis reveals a faint 60 second modulation of the pulsars signal, which we interpret as a free precession of the pulsar.

قيم البحث

اقرأ أيضاً

We observed the Crab pulsar in October 2008 at the Copernico Telescope in Asiago - Cima Ekar with the optical photon counter Aqueye (the Asiago Quantum Eye) which has the best temporal resolution and accuracy ever achieved in the optical domain (hund reds of picoseconds). Our goal was to perform a detailed analysis of the optical period and phase drift of the main peak of the Crab pulsar and compare it with the Jodrell Bank ephemerides. We determined the position of the main peak using the steepest zero of the cross-correlation function between the pulsar signal and an accurate optical template. The pulsar rotational period and period derivative have been measured with great accuracy using observations covering only a 2 day time interval. The error on the period is 1.7 ps, limited only by the statistical uncertainty. Both the rotational frequency and its first derivative are in agreement with those from the Jodrell Bank radio ephemerides archive. We also found evidence of the optical peak leading the radio one by ~230 microseconds. The distribution of phase-residuals of the whole dataset is slightly wider than that of a synthetic signal generated as a sequence of pulses distributed in time with the probability proportional to the pulse shape, such as the average count rate and background level are those of the Crab pulsar observed with Aqueye. The counting statistics and quality of the data allowed us to determine the pulsar period and period derivative with great accuracy in 2 days only. The time of arrival of the optical peak of the Crab pulsar leads the radio one in agreement with what recently reported in the literature. The distribution of the phase residuals can be approximated with a Gaussian and is consistent with being completely caused by photon noise (for the best data sets).
131 - T.Mineo , C.Ferrigno , L.Foschini 2006
The paper presents the timing and spectral analysis of several observations of the Crab pulsar performed with INTEGRAL in the energy range 3-500 keV. All these observations, when summed together provide a high statistics data set which can be used fo r accurate phase resolved spectroscopy. A detailed study of the pulsed emission at different phase intervals is performed. The spectral distribution changes with phase showing a characteristic reverse S shape of the photon index. Moreover the spectrum softens with energy, in each phase interval, and this behavior is adequately modeled over the whole energy range 3-500 keV with a single curved law with a slope variable with Log(E), confirming the BeppoSAX results on the curvature of the pulsed emission. The bending parameter of the log-parabolic model is compatible with a single value of 0.14+/-0.02 over all phase intervals. Results are discussed within the three-dimensional outer gap model.
131 - A. McCann 2013
The Fermi space telescope has detected over 100 pulsars. These discoveries have ushered in a new era of pulsar astrophysics at gamma-ray energies. Gamma-ray pulsars, regardless of whether they are young, old, radio-quiet etc, all exhibit a seemingly unifying characteristic: a spectral energy distribution which takes the form of a power law with an exponential cut-off occurring between ~1 and ~10 GeV. The single known exception to this is the Crab pulsar, which was recently discovered to emit pulsed gamma rays at energies exceeding a few hundred GeV. Here we present an update on observations of the Crab pulsar above 100 GeV with VERITAS. We show some new results from a joint gamma-ray/radio observational campaign to search for a correlation between giant radio pulses and pulsed VHE emission from the Crab pulsar. We also present some preliminary results on Lorentz invariance violation tests performed using Fermi and VERITAS observations of the Crab pulsar.
We study the spectral energy distribution (SED) of the Crab Pulsar and its nearby knot in the optical and in the infrared (IR) regime. We present high-quality UBVRIz, as well as adaptive optics JHK_sL photometry, achieved under excellent conditions with the FORS1 and NAOS/CONICA instruments at the VLT. We combine these data with re-analyzed archival Spitzer Space Telescope data to construct a SED for the pulsar, and quantify the contamination from the knot. We have also gathered optical imaging data from 1988 to 2008 from several telescopes in order to examine the predicted secular decrease in luminosity. For the Crab Pulsar SED we find a spectral slope of alpha_nu = 0.27+-0.03 in the optical/near-IR regime, when we exclude the contribution from the knot. For the knot itself, we find a much redder slope of alpha_nu = -1.3 +- 0.1. Our best estimate of the average decrease in luminosity for the pulsar is 2.9+-1.6 mmag per year. We have demonstrated the importance of the nearby knot in precision measurements of the Crab Pulsar SED, in particular in the near-IR. We have scrutinized the evidence for the traditional view of a synchrotron self-absorption roll-over in the infrared, and find that these claims are unfounded. We also find evidence for a secular decrease in the optical light for the Crab Pulsar, in agreement with current pulsar spin-down models. However, although our measurements of the decrease significantly improve on previous investigations, the detection is still tentative. We finally point to future observations that can improve the situation significantly.
We present a stroboscopic system developed for optical observations of pulsars and its application in the CLYPOS survey. The stroboscopic device is connected to a GPS clock and provides absolute timing to the stroboscopic shutter relative to the puls ars radio ephemerides. By changing the phase we can examine the pulsars light curve. The precisely timed stroboscope in front of the CCD camera can perform highly accurate time resolved pulsar photometry and offers the advantages of CCD cameras, which are high quantum efficiency as well as relatively large field of view, which is important for flux calibrations. CLYPOS (Cananea Ljubljana Young Pulsar Optical Survey) is an extensive search for optical counterparts of about 30 northern hemisphere radio pulsars. It is a collaboration between the INAOE, Mexico and the Faculty of Mathematics and Physics of the University of Ljubljana. Stroboscopic observations were done between December 1998 and November 2000 at the 2.12 m telescope of the Observatory Guillermo Haro in Cananea, Sonora. The first results of the survey are presented. Analyzed data indicate that there is no optical counterpart brighter than ~22.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا