ﻻ يوجد ملخص باللغة العربية
We present a stroboscopic system developed for optical observations of pulsars and its application in the CLYPOS survey. The stroboscopic device is connected to a GPS clock and provides absolute timing to the stroboscopic shutter relative to the pulsars radio ephemerides. By changing the phase we can examine the pulsars light curve. The precisely timed stroboscope in front of the CCD camera can perform highly accurate time resolved pulsar photometry and offers the advantages of CCD cameras, which are high quantum efficiency as well as relatively large field of view, which is important for flux calibrations. CLYPOS (Cananea Ljubljana Young Pulsar Optical Survey) is an extensive search for optical counterparts of about 30 northern hemisphere radio pulsars. It is a collaboration between the INAOE, Mexico and the Faculty of Mathematics and Physics of the University of Ljubljana. Stroboscopic observations were done between December 1998 and November 2000 at the 2.12 m telescope of the Observatory Guillermo Haro in Cananea, Sonora. The first results of the survey are presented. Analyzed data indicate that there is no optical counterpart brighter than ~22.
Photometric data of the Crab pulsar, obtained in stroboscopic mode over a period of more than eight years, are presented here. The applied Fourier analysis reveals a faint 60 second modulation of the pulsars signal, which we interpret as a free precession of the pulsar.
A stroboscope designed to observe pulsars in the optical spectrum is presented. The absolute phase of the stroboscope is synchronized to better than 2.5 microseconds with the known radio ephemerides for a given pulsar. The absolute timing is provided
Context{The high energy emission regions of rotation powered pulsars are studied using folded light curve (FLCs) and phase resolved spectra (PRS).} aims{This work uses the NICER observatory to obtain the highest resolution FLC and PRS of the Crab pul
We present a modified outer gap model to study the phase-resolved spectra of the Crab pulsar. A theoretical double peak profile of the light curve containing the whole phase is shown to be consistent with the observed light curve of the Crab pulsar b
The stationary phase point (SPP) method in one-dimensional case is introduced to treat the diffractive scintillation. From weak scattering, where the SPP number N=1, to strong scattering (N$gg$1), via transitional scattering regime (N$sim$2,3), we fi