ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluating Transferability of BERT Models on Uralic Languages

134   0   0.0 ( 0 )
 نشر من قبل Judit Acs
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transformer-based language models such as BERT have outperformed previous models on a large number of English benchmarks, but their evaluation is often limited to English or a small number of well-resourced languages. In this work, we evaluate monolingual, multilingual, and randomly initialized language models from the BERT family on a variety of Uralic languages including Estonian, Finnish, Hungarian, Erzya, Moksha, Karelian, Livvi, Komi Permyak, Komi Zyrian, Northern Sami, and Skolt Sami. When monolingual models are available (currently only et, fi, hu), these perform better on their native language, but in general they transfer worse than multilingual models or models of genetically unrelated languages that share the same character set. Remarkably, straightforward transfer of high-resource models, even without special efforts toward hyperparameter optimization, yields what appear to be state of the art POS and NER tools for the minority Uralic languages where there is sufficient data for finetuning.

قيم البحث

اقرأ أيضاً

Natural language processing (NLP) tasks, ranging from text classification to text generation, have been revolutionised by the pre-trained language models, such as BERT. This allows corporations to easily build powerful APIs by encapsulating fine-tune d BERT models for downstream tasks. However, when a fine-tuned BERT model is deployed as a service, it may suffer from different attacks launched by malicious users. In this work, we first present how an adversary can steal a BERT-based API service (the victim/target model) on multiple benchmark datasets with limited prior knowledge and queries. We further show that the extracted model can lead to highly transferable adversarial attacks against the victim model. Our studies indicate that the potential vulnerabilities of BERT-based API services still hold, even when there is an architectural mismatch between the victim model and the attack model. Finally, we investigate two defence strategies to protect the victim model and find that unless the performance of the victim model is sacrificed, both model ex-traction and adversarial transferability can effectively compromise the target models
256 - Boxin Wang , Boyuan Pan , Xin Li 2020
Recent advances in large-scale language representation models such as BERT have improved the state-of-the-art performances in many NLP tasks. Meanwhile, character-level Chinese NLP models, including BERT for Chinese, have also demonstrated that they can outperform the existing models. In this paper, we show that, however, such BERT-based models are vulnerable under character-level adversarial attacks. We propose a novel Chinese char-level attack method against BERT-based classifiers. Essentially, we generate small perturbation on the character level in the embedding space and guide the character substitution procedure. Extensive experiments show that the classification accuracy on a Chinese news dataset drops from 91.8% to 0% by manipulating less than 2 characters on average based on the proposed attack. Human evaluations also confirm that our generated Chinese adversarial examples barely affect human performance on these NLP tasks.
126 - Shijie Wu , Mark Dredze 2020
Multilingual BERT (mBERT) trained on 104 languages has shown surprisingly good cross-lingual performance on several NLP tasks, even without explicit cross-lingual signals. However, these evaluations have focused on cross-lingual transfer with high-re source languages, covering only a third of the languages covered by mBERT. We explore how mBERT performs on a much wider set of languages, focusing on the quality of representation for low-resource languages, measured by within-language performance. We consider three tasks: Named Entity Recognition (99 languages), Part-of-speech Tagging, and Dependency Parsing (54 languages each). mBERT does better than or comparable to baselines on high resource languages but does much worse for low resource languages. Furthermore, monolingual BERT models for these languages do even worse. Paired with similar languages, the performance gap between monolingual BERT and mBERT can be narrowed. We find that better models for low resource languages require more efficient pretraining techniques or more data.
Despite the increasing number of large and comprehensive machine translation (MT) systems, evaluation of these methods in various languages has been restrained by the lack of high-quality parallel corpora as well as engagement with the people that sp eak these languages. In this study, we present an evaluation of state-of-the-art approaches to training and evaluating MT systems in 22 languages from the Turkic language family, most of which being extremely under-explored. First, we adopt the TIL Corpus with a few key improvements to the training and the evaluation sets. Then, we train 26 bilingual baselines as well as a multi-way neural MT (MNMT) model using the corpus and perform an extensive analysis using automatic metrics as well as human evaluations. We find that the MNMT model outperforms almost all bilingual baselines in the out-of-domain test sets and finetuning the model on a downstream task of a single pair also results in a huge performance boost in both low- and high-resource scenarios. Our attentive analysis of evaluation criteria for MT models in Turkic languages also points to the necessity for further research in this direction. We release the corpus splits, test sets as well as models to the public.
Pretrained multilingual models are able to perform cross-lingual transfer in a zero-shot setting, even for languages unseen during pretraining. However, prior work evaluating performance on unseen languages has largely been limited to low-level, synt actic tasks, and it remains unclear if zero-shot learning of high-level, semantic tasks is possible for unseen languages. To explore this question, we present AmericasNLI, an extension of XNLI (Conneau et al., 2018) to 10 indigenous languages of the Americas. We conduct experiments with XLM-R, testing multiple zero-shot and translation-based approaches. Additionally, we explore model adaptation via continued pretraining and provide an analysis of the dataset by considering hypothesis-only models. We find that XLM-Rs zero-shot performance is poor for all 10 languages, with an average performance of 38.62%. Continued pretraining offers improvements, with an average accuracy of 44.05%. Surprisingly, training on poorly translated data by far outperforms all other methods with an accuracy of 48.72%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا