ترغب بنشر مسار تعليمي؟ اضغط هنا

Model Extraction and Adversarial Transferability, Your BERT is Vulnerable!

87   0   0.0 ( 0 )
 نشر من قبل Xuanli He
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Natural language processing (NLP) tasks, ranging from text classification to text generation, have been revolutionised by the pre-trained language models, such as BERT. This allows corporations to easily build powerful APIs by encapsulating fine-tuned BERT models for downstream tasks. However, when a fine-tuned BERT model is deployed as a service, it may suffer from different attacks launched by malicious users. In this work, we first present how an adversary can steal a BERT-based API service (the victim/target model) on multiple benchmark datasets with limited prior knowledge and queries. We further show that the extracted model can lead to highly transferable adversarial attacks against the victim model. Our studies indicate that the potential vulnerabilities of BERT-based API services still hold, even when there is an architectural mismatch between the victim model and the attack model. Finally, we investigate two defence strategies to protect the victim model and find that unless the performance of the victim model is sacrificed, both model ex-traction and adversarial transferability can effectively compromise the target models

قيم البحث

اقرأ أيضاً

Adversarial attacks for discrete data (such as texts) have been proved significantly more challenging than continuous data (such as images) since it is difficult to generate adversarial samples with gradient-based methods. Current successful attack m ethods for texts usually adopt heuristic replacement strategies on the character or word level, which remains challenging to find the optimal solution in the massive space of possible combinations of replacements while preserving semantic consistency and language fluency. In this paper, we propose textbf{BERT-Attack}, a high-quality and effective method to generate adversarial samples using pre-trained masked language models exemplified by BERT. We turn BERT against its fine-tuned models and other deep neural models in downstream tasks so that we can successfully mislead the target models to predict incorrectly. Our method outperforms state-of-the-art attack strategies in both success rate and perturb percentage, while the generated adversarial samples are fluent and semantically preserved. Also, the cost of calculation is low, thus possible for large-scale generations. The code is available at https://github.com/LinyangLee/BERT-Attack.
Transformer-based language models such as BERT have outperformed previous models on a large number of English benchmarks, but their evaluation is often limited to English or a small number of well-resourced languages. In this work, we evaluate monoli ngual, multilingual, and randomly initialized language models from the BERT family on a variety of Uralic languages including Estonian, Finnish, Hungarian, Erzya, Moksha, Karelian, Livvi, Komi Permyak, Komi Zyrian, Northern Sami, and Skolt Sami. When monolingual models are available (currently only et, fi, hu), these perform better on their native language, but in general they transfer worse than multilingual models or models of genetically unrelated languages that share the same character set. Remarkably, straightforward transfer of high-resource models, even without special efforts toward hyperparameter optimization, yields what appear to be state of the art POS and NER tools for the minority Uralic languages where there is sufficient data for finetuning.
334 - Luyu Gao , Jamie Callan 2021
Pre-trained language models (LM) have become go-to text representation encoders. Prior research used deep LMs to encode text sequences such as sentences and passages into single dense vector representations. These dense representations have been used in efficient text comparison and embedding-based retrieval. However, dense encoders suffer in low resource situations. Many techniques have been developed to solve this problem. Despite their success, not much is known about why this happens. This paper shows that one cause lies in the readiness of the LM to expose its knowledge through dense representation in fine-tuning, which we term Optimization Readiness. To validate the theory, we present Condenser, a general pre-training architecture based on Transformer LMs, to improve dense optimization readiness. We show that fine-tuning from Condenser significantly improves performance for small and/or noisy training sets.
141 - Po-Ting Lai , Zhiyong Lu 2021
A biomedical relation statement is commonly expressed in multiple sentences and consists of many concepts, including gene, disease, chemical, and mutation. To automatically extract information from biomedical literature, existing biomedical text-mini ng approaches typically formulate the problem as a cross-sentence n-ary relation-extraction task that detects relations among n entities across multiple sentences, and use either a graph neural network (GNN) with long short-term memory (LSTM) or an attention mechanism. Recently, Transformer has been shown to outperform LSTM on many natural language processing (NLP) tasks. In this work, we propose a novel architecture that combines Bidirectional Encoder Representations from Transformers with Graph Transformer (BERT-GT), through integrating a neighbor-attention mechanism into the BERT architecture. Unlike the original Transformer architecture, which utilizes the whole sentence(s) to calculate the attention of the current token, the neighbor-attention mechanism in our method calculates its attention utilizing only its neighbor tokens. Thus, each token can pay attention to its neighbor information with little noise. We show that this is critically important when the text is very long, as in cross-sentence or abstract-level relation-extraction tasks. Our benchmarking results show improvements of 5.44% and 3.89% in accuracy and F1-measure over the state-of-the-art on n-ary and chemical-protein relation datasets, suggesting BERT-GT is a robust approach that is applicable to other biomedical relation extraction tasks or datasets.
Knowledge transferability, or transfer learning, has been widely adopted to allow a pre-trained model in the source domain to be effectively adapted to downstream tasks in the target domain. It is thus important to explore and understand the factors affecting knowledge transferability. In this paper, as the first work, we analyze and demonstrate the connections between knowledge transferability and another important phenomenon--adversarial transferability, emph{i.e.}, adversarial examples generated against one model can be transferred to attack other models. Our theoretical studies show that adversarial transferability indicates knowledge transferability and vice versa. Moreover, based on the theoretical insights, we propose two practical adversarial transferability metrics to characterize this process, serving as bidirectional indicators between adversarial and knowledge transferability. We conduct extensive experiments for different scenarios on diverse datasets, showing a positive correlation between adversarial transferability and knowledge transferability. Our findings will shed light on future research about effective knowledge transfer learning and adversarial transferability analyses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا