ﻻ يوجد ملخص باللغة العربية
Zero-shot domain adaptation (ZDA) methods aim to transfer knowledge about a task learned in a source domain to a target domain, while data from target domain are not available. In this work, we address learning feature representations which are invariant to and shared among different domains considering task characteristics for ZDA. To this end, we propose a method for task-guided ZDA (TG-ZDA) which employs multi-branch deep neural networks to learn feature representations exploiting their domain invariance and shareability properties. The proposed TG-ZDA models can be trained end-to-end without requiring synthetic tasks and data generated from estimated representations of target domains. The proposed TG-ZDA has been examined using benchmark ZDA tasks on image classification datasets. Experimental results show that our proposed TG-ZDA outperforms state-of-the-art ZDA methods for different domains and tasks.
Learning based representation has become the key to the success of many computer vision systems. While many 3D representations have been proposed, it is still an unaddressed problem how to represent a dynamically changing 3D object. In this paper, we
Recently, there is an increasing demand for automatically detecting anatomical landmarks which provide rich structural information to facilitate subsequent medical image analysis. Current methods related to this task often leverage the power of deep
Transfer learning is widely used in deep neural network models when there are few labeled examples available. The common approach is to take a pre-trained network in a similar task and finetune the model parameters. This is usually done blindly witho
Deep neural networks have been shown to easily overfit to biased training data with label noise or class imbalance. Meta-learning algorithms are commonly designed to alleviate this issue in the form of sample reweighting, by learning a meta weighting
In compositional zero-shot learning, the goal is to recognize unseen compositions (e.g. old dog) of observed visual primitives states (e.g. old, cute) and objects (e.g. car, dog) in the training set. This is challenging because the same state can for