ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Compositional Representation for 4D Captures with Neural ODE

98   0   0.0 ( 0 )
 نشر من قبل Boyan Jiang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning based representation has become the key to the success of many computer vision systems. While many 3D representations have been proposed, it is still an unaddressed problem how to represent a dynamically changing 3D object. In this paper, we introduce a compositional representation for 4D captures, i.e. a deforming 3D object over a temporal span, that disentangles shape, initial state, and motion respectively. Each component is represented by a latent code via a trained encoder. To model the motion, a neural Ordinary Differential Equation (ODE) is trained to update the initial state conditioned on the learned motion code, and a decoder takes the shape code and the updated state code to reconstruct the 3D model at each time stamp. To this end, we propose an Identity Exchange Training (IET) strategy to encourage the network to learn effectively decoupling each component. Extensive experiments demonstrate that the proposed method outperforms existing state-of-the-art deep learning based methods on 4D reconstruction, and significantly improves on various tasks, including motion transfer and completion.



قيم البحث

اقرأ أيضاً

Most existing 3D CNNs for video representation learning are clip-based methods, and thus do not consider video-level temporal evolution of spatio-temporal features. In this paper, we propose Video-level 4D Convolutional Neural Networks, referred as V 4D, to model the evolution of long-range spatio-temporal representation with 4D convolutions, and at the same time, to preserve strong 3D spatio-temporal representation with residual connections. Specifically, we design a new 4D residual block able to capture inter-clip interactions, which could enhance the representation power of the original clip-level 3D CNNs. The 4D residual blocks can be easily integrated into the existing 3D CNNs to perform long-range modeling hierarchically. We further introduce the training and inference methods for the proposed V4D. Extensive experiments are conducted on three video recognition benchmarks, where V4D achieves excellent results, surpassing recent 3D CNNs by a large margin.
67 - Shuang Liu , Mete Ozay 2021
Zero-shot domain adaptation (ZDA) methods aim to transfer knowledge about a task learned in a source domain to a target domain, while data from target domain are not available. In this work, we address learning feature representations which are invar iant to and shared among different domains considering task characteristics for ZDA. To this end, we propose a method for task-guided ZDA (TG-ZDA) which employs multi-branch deep neural networks to learn feature representations exploiting their domain invariance and shareability properties. The proposed TG-ZDA models can be trained end-to-end without requiring synthetic tasks and data generated from estimated representations of target domains. The proposed TG-ZDA has been examined using benchmark ZDA tasks on image classification datasets. Experimental results show that our proposed TG-ZDA outperforms state-of-the-art ZDA methods for different domains and tasks.
Few-Shot Learning (FSL) is a challenging task, i.e., how to recognize novel classes with few examples? Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then predict novel classes via a nearest neighbor classifier with mean-based prototypes. Nevertheless, due to the data scarcity, the mean-based prototypes are usually biased. In this paper, we diminish the bias by regarding it as a prototype optimization problem. Although the existing meta-optimizers can also be applied for the optimization, they all overlook a crucial gradient bias issue, i.e., the mean-based gradient estimation is also biased on scarce data. Consequently, we regard the gradient itself as meta-knowledge and then propose a novel prototype optimization-based meta-learning framework, called MetaNODE. Specifically, we first regard the mean-based prototypes as initial prototypes, and then model the process of prototype optimization as continuous-time dynamics specified by a Neural Ordinary Differential Equation (Neural ODE). A gradient flow inference network is carefully designed to learn to estimate the continuous gradients for prototype dynamics. Finally, the optimal prototypes can be obtained by solving the Neural ODE using the Runge-Kutta method. Extensive experiments demonstrate that our proposed method obtains superior performance over the previous state-of-the-art methods. Our code will be publicly available upon acceptance.
Implicit neural rendering techniques have shown promising results for novel view synthesis. However, existing methods usually encode the entire scene as a whole, which is generally not aware of the object identity and limits the ability to the high-l evel editing tasks such as moving or adding furniture. In this paper, we present a novel neural scene rendering system, which learns an object-compositional neural radiance field and produces realistic rendering with editing capability for a clustered and real-world scene. Specifically, we design a novel two-pathway architecture, in which the scene branch encodes the scene geometry and appearance, and the object branch encodes each standalone object conditioned on learnable object activation codes. To survive the training in heavily cluttered scenes, we propose a scene-guided training strategy to solve the 3D space ambiguity in the occluded regions and learn sharp boundaries for each object. Extensive experiments demonstrate that our system not only achieves competitive performance for static scene novel-view synthesis, but also produces realistic rendering for object-level editing.
Recently proposed neural architecture search (NAS) algorithms adopt neural predictors to accelerate the architecture search. The capability of neural predictors to accurately predict the performance metrics of neural architecture is critical to NAS, and the acquisition of training datasets for neural predictors is time-consuming. How to obtain a neural predictor with high prediction accuracy using a small amount of training data is a central problem to neural predictor-based NAS. Here, we firstly design a new architecture encoding scheme that overcomes the drawbacks of existing vector-based architecture encoding schemes to calculate the graph edit distance of neural architectures. To enhance the predictive performance of neural predictors, we devise two self-supervised learning methods from different perspectives to pre-train the architecture embedding part of neural predictors to generate a meaningful representation of neural architectures. The first one is to train a carefully designed two branch graph neural network model to predict the graph edit distance of two input neural architectures. The second method is inspired by the prevalently contrastive learning, and we present a new contrastive learning algorithm that utilizes a central feature vector as a proxy to contrast positive pairs against negative pairs. Experimental results illustrate that the pre-trained neural predictors can achieve comparable or superior performance compared with their supervised counterparts with several times less training samples. We achieve state-of-the-art performance on the NASBench-101 and NASBench201 benchmarks when integrating the pre-trained neural predictors with an evolutionary NAS algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا