ترغب بنشر مسار تعليمي؟ اضغط هنا

Where Should I Look? Optimised Gaze Control for Whole-Body Collision Avoidance in Dynamic Environments

157   0   0.0 ( 0 )
 نشر من قبل Mark Finean
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As robots operate in increasingly complex and dynamic environments, fast motion re-planning has become a widely explored area of research. In a real-world deployment, we often lack the ability to fully observe the environment at all times, giving rise to the challenge of determining how to best perceive the environment given a continuously updated motion plan. We provide the first investigation into a `smart controller for gaze control with the objective of providing effective perception of the environment for obstacle avoidance and motion planning in dynamic and unknown environments. We detail the novel problem of determining the best head camera behaviour for mobile robots when constrained by a trajectory. Furthermore, we propose a greedy optimisation-based solution that uses a combination of voxelised rewards and motion primitives. We demonstrate that our method outperforms the benchmark methods in 2D and 3D environments, in respect of both the ability to explore the local surroundings, as well as in a superior success rate of finding collision-free trajectories -- our method is shown to provide 7.4x better map exploration while consistently achieving a higher success rate for generating collision-free trajectories. We verify our findings on a physical Toyota Human Support Robot (HSR) using a GPU-accelerated perception framework.



قيم البحث

اقرأ أيضاً

Recent work has demonstrated real-time mapping and reconstruction from dense perception, while motion planning based on distance fields has been shown to achieve fast, collision-free motion synthesis with good convergence properties. However, demonst ration of a fully integrated system that can safely re-plan in unknown environments, in the presence of static and dynamic obstacles, has remained an open challenge. In this work, we first study the impact that signed and unsigned distance fields have on optimisation convergence, and the resultant error cost in trajectory optimisation problems in 2D path planning, arm manipulator motion planning, and whole-body loco-manipulation planning. We further analyse the performance of three state-of-the-art approaches to generating distance fields (Voxblox, Fiesta, and GPU-Voxels) for use in real-time environment reconstruction. Finally, we use our findings to construct a practical hybrid mapping and motion planning system which uses GPU-Voxels and GPMP2 to perform receding-horizon whole-body motion planning that can smoothly avoid moving obstacles in 3D space using live sensor data. Our results are validated in simulation and on a real-world Toyota Human Support Robot (HSR).
The deployment of robots in industrial and civil scenarios is a viable solution to protect operators from danger and hazards. Shared autonomy is paramount to enable remote control of complex systems such as legged robots, allowing the operator to foc us on the essential tasks instead of overly detailed execution. To realize this, we propose a comprehensive control framework for inspection and intervention using a legged robot and validate the integration of multiple loco-manipulation algorithms optimised for improving the remote operation. The proposed control offers 3 operation modes: fully automated, semi-autonomous, and the haptic interface receiving onsite physical interaction for assisting teleoperation. Our contribution is the design of a QP-based semi-analytical whole-body control, which is the key to the various task completion subject to internal and external constraints. We demonstrate the versatility of the whole-body control in terms of decoupling tasks, singularity tolerance and constraint satisfaction. We deploy our solution in field trials and evaluate in an emergency setting by an E-stop while the robot is clearing road barriers and traversing difficult terrains.
Online generation of collision free trajectories is of prime importance for autonomous navigation. Dynamic environments, robot motion and sensing uncertainties adds further challenges to collision avoidance systems. This paper presents an approach fo r collision avoidance in dynamic environments, incorporating robot and obstacle state uncertainties. We derive a tight upper bound for collision probability between robot and obstacle and formulate it as a motion planning constraint which is solvable in real time. The proposed approach is tested in simulation considering mobile robots as well as quadrotors to demonstrate that successful collision avoidance is achieved in real time application. We also provide a comparison of our approach with several state-of-the-art methods.
326 - D. Kim , S. Jorgensen , J. Lee 2019
Whole-body control (WBC) is a generic task-oriented control method for feedback control of loco-manipulation behaviors in humanoid robots. The combination of WBC and model-based walking controllers has been widely utilized in various humanoid robots. However, to date, the WBC method has not been employed for unsupported passive-ankle dynamic locomotion. As such, in this paper, we devise a new WBC, dubbed whole-body locomotion controller (WBLC), that can achieve experimental dynamic walking on unsupported passive-ankle biped robots. A key aspect of WBLC is the relaxation of contact constraints such that the control commands produce reduced jerk when switching foot contacts. To achieve robust dynamic locomotion, we conduct an in-depth analysis of uncertainty for our dynamic walking algorithm called time-to-velocity-reversal (TVR) planner. The uncertainty study is fundamental as it allows us to improve the control algorithms and mechanical structure of our robot to fulfill the tolerated uncertainty. In addition, we conduct extensive experimentation for: 1) unsupported dynamic balancing (i.e. in-place stepping) with a six degree-of-freedom (DoF) biped, Mercury; 2) unsupported directional walking with Mercury; 3) walking over an irregular and slippery terrain with Mercury; and 4) in-place walking with our newly designed ten-DoF viscoelastic liquid-cooled biped, DRACO. Overall, the main contributions of this work are on: a) achieving various modalities of unsupported dynamic locomotion of passive-ankle bipeds using a WBLC controller and a TVR planner, b) conducting an uncertainty analysis to improve the mechanical structure and the controllers of Mercury, and c) devising a whole-body control strategy that reduces movement jerk during walking.
We design and experimentally evaluate a hybrid safe-by-construction collision avoidance controller for autonomous vehicles. The controller combines into a single architecture the respective advantages of an adaptive controller and a discrete safe con troller. The adaptive controller relies on model predictive control to achieve optimal efficiency in nominal conditions. The safe controller avoids collision by applying two different policies, for nominal and out-of-nominal conditions, respectively. We present design principles for both the adaptive and the safe controller and show how each one can contribute in the hybrid architecture to improve performance, road occupancy and passenger comfort while preserving safety. The experimental results confirm the feasibility of the approach and the practical relevance of hybrid controllers for safe and efficient driving.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا