ﻻ يوجد ملخص باللغة العربية
We compute Gromov-Witten (GW) and Donaldson-Thomas (DT) invariants (and also descendant invariants) for local CY 4-folds over Fano 3-folds, V_5 and V_22 up to degree 3. We use torus localization for GW invariants computation, and use classical results for Hilbert schemes on V_5 and V_22 for DT invariants computation. From these computations, one can check correspondence between DT and Gopakumar-Vafa (GV) invariants conjectured by Cao-Maulik-Toda in genus 0. Also we can compute genus 1 GV invariants via the conjecture of Cao-Toda, which turned out to be 0. These fit into the fact that there are no smooth elliptic curves in V_5 and V_22 up to degree 3.
We study Hilbert schemes of points on a smooth projective Calabi-Yau 4-fold $X$. We define $mathrm{DT}_4$ invariants by integrating the Euler class of a tautological vector bundle $L^{[n]}$ against the virtual class. We conjecture a formula for their
We prove the equivariant Gromov-Witten theory of a nonsingular toric 3-fold X with primary insertions is equivalent to the equivariant Donaldson-Thomas theory of X. As a corollary, the topological vertex calculations by Agangic, Klemm, Marino, and Va
Borisov-Joyce constructed a real virtual cycle on compact moduli spaces of stable sheaves on Calabi-Yau 4-folds, using derived differential geometry. We construct an algebraic virtual cycle. A key step is a localisation of Edidin-Grahams square roo
We first construct a derived equivalence between a small crepant resolution of an affine toric Calabi-Yau 3-fold and a certain quiver with a superpotential. Under this derived equivalence we establish a wall-crossing formula for the generating functi
We study higher rank Donaldson-Thomas invariants of a Calabi-Yau 3-fold using Joyce-Songs wall-crossing formula. We construct quivers whose counting invariants coincide with the Donaldson-Thomas invariants. As a corollary, we prove the integrality an