ﻻ يوجد ملخص باللغة العربية
We study higher rank Donaldson-Thomas invariants of a Calabi-Yau 3-fold using Joyce-Songs wall-crossing formula. We construct quivers whose counting invariants coincide with the Donaldson-Thomas invariants. As a corollary, we prove the integrality and a certain symmetry for the higher rank invariants.
We present some computations of higher rank refined Donaldson-Thomas invariants on local curve geometries, corresponding to local D6-D2-D0 or D4-D2-D0 configurations. A refined wall-crossing formula for invariants with higher D6 or D4 ranks is derive
We study motivic Donaldson-Thomas invariants in the sense of Behrend-Bryan-Szendroi. A wall-crossing formula under a mutation is proved for a certain class of quivers with potentials.
We study certain DT invariants arising from stable coherent sheaves in a nonsingular projective threefold supported on the members of a linear system of a fixed line bundle. When the canonical bundle of the threefold satisfies certain positivity cond
We compute the motivic Donaldson-Thomas theory of small crepant resolutions of toric Calabi-Yau 3-folds.
We study Hilbert schemes of points on a smooth projective Calabi-Yau 4-fold $X$. We define $mathrm{DT}_4$ invariants by integrating the Euler class of a tautological vector bundle $L^{[n]}$ against the virtual class. We conjecture a formula for their