ﻻ يوجد ملخص باللغة العربية
The key transform of the REESSE1+ asymmetrical cryptosystem is Ci = (Ai * W ^ l(i)) ^ d (% M) with l(i) in Omega = {5, 7, ..., 2n + 3} for i = 1, ..., n, where l(i) is called a lever function. In this paper, the authors give a simplified key transform Ci = Ai * W ^ l(i) (% M) with a new lever function l(i) from {1, ..., n} to Omega = {+/-5, +/-6, ..., +/-(n + 4)}, where +/- means the selection of the + or - sign. Discuss the necessity of the new l(i), namely that a simplified private key is insecure if the new l(i) is a constant but not one-to-one function. Further, expound the sufficiency of the new l(i) from four aspects: (1) indeterminacy of the new l(i), (2) insufficient conditions for neutralizing the powers of W and W ^-1 even if Omega = {5, 6, ..., n + 4}, (3) verification by examples, and (4) running times of the continued fraction attack and W-parameter intersection attack which are the two most efficient of the probabilistic polytime attack algorithms so far. Last, the authors elaborate the relation between a lever function and a random oracle.
In the claw detection problem we are given two functions $f:Drightarrow R$ and $g:Drightarrow R$ ($|D|=n$, $|R|=k$), and we have to determine if there is exist $x,yin D$ such that $f(x)=g(y)$. We show that the quantum query complexity of this problem
In the $left( {t,n} right)$ threshold quantum secret sharing scheme, it is difficult to ensure that internal participants are honest. In this paper, a verifiable $left( {t,n} right)$ threshold quantum secret sharing scheme is designed combined with c
The hardness of the learning with errors (LWE) problem is one of the most fruitful resources of modern cryptography. In particular, it is one of the most prominent candidates for secure post-quantum cryptography. Understanding its quantum complexity
To examine the integrity and authenticity of an IP address efficiently and economically, this paper proposes a new non-Merkle-Damgard structural (non-MDS) hash function called JUNA that is based on a multivariate permutation problem and an anomalous
Function inversion is the problem that given a random function $f: [M] to [N]$, we want to find pre-image of any image $f^{-1}(y)$ in time $T$. In this work, we revisit this problem under the preprocessing model where we can compute some auxiliary in