ﻻ يوجد ملخص باللغة العربية
In the claw detection problem we are given two functions $f:Drightarrow R$ and $g:Drightarrow R$ ($|D|=n$, $|R|=k$), and we have to determine if there is exist $x,yin D$ such that $f(x)=g(y)$. We show that the quantum query complexity of this problem is between $Omegaleft(n^{1/2}k^{1/6}right)$ and $Oleft(n^{1/2+varepsilon}k^{1/4}right)$ when $2leq k<n$.
A emph{$k$--bisection} of a bridgeless cubic graph $G$ is a $2$--colouring of its vertex set such that the colour classes have the same cardinality and all connected components in the two subgraphs induced by the colour classes have order at most $k$
We present two new results about exact learning by quantum computers. First, we show how to exactly learn a $k$-Fourier-sparse $n$-bit Boolean function from $O(k^{1.5}(log k)^2)$ uniform quantum examples for that function. This improves over the boun
Function inversion is the problem that given a random function $f: [M] to [N]$, we want to find pre-image of any image $f^{-1}(y)$ in time $T$. In this work, we revisit this problem under the preprocessing model where we can compute some auxiliary in
In the article [Petojevic 2006], A. Petojevi c verified useful properties of the $K_{i}(z)$ functions which generalize Kurepas [Kurepa 1971] left factorial function. In this note, we present simplified proofs of two of these results and we answer the
We present a model of two-kinks resulting from an explicit composition of two standards kinks of the $phi^4$ model based on the procedure of Ref. cite{uchiyama}. The two-kinks have an additional parameter accounting for the separation of the standard