ترغب بنشر مسار تعليمي؟ اضغط هنا

The characterization of a hybrid telescope detector for low energy alpha detection

105   0   0.0 ( 0 )
 نشر من قبل Rajkumar Santra
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Characterization of a hybrid ${it telescope}$ with gas transmission detector ($Delta$E) and a solid-state stop detector (E) has been fabricated for detection of low energy $alpha$ particles between 5 to 1 MeV. The detector is developed for utilization in the study of alpha excitation function in (p.$alpha$) reaction. The gas ionization chamber, operated in axial field mode, measures the differential energy loss ($Delta$E), while the residual energies are measured by silicon detector. Particle identification is realized by implementing the $Delta$E-E technique. The optimum sensitivity of the detector as a telescope has been studied down to the lowest energy value of 0.89 MeV $alpha$-particles with a suitable combination of electric field and pressure or E/p value in the ionization region.

قيم البحث

اقرأ أيضاً

The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standa rds. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 8 keV up to 1 MeV. In this work we present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of these neutron fields.
Deterioration of the operation parameters of Al/SiO2/p-type Si surface barrier detector upon irradiation with alpha-particles at room temperature was investigated. As a result of 40-days irradiation with a total fluence of 8*10^9 {alpha}-particles, a n increase of {alpha}-peak FWHM from 70 keV to 100 keV was observed and explained by increase of the detector reverse current due to formation of a high concentration of near mid-gap defect levels. Performed CV measurements revealed the appearance of at least 6*10^12 cm-3 radiation-induced acceptors at the depths where according to the TRIM simulations the highest concentration of vacancy-interstitial pairs was created by the incoming {alpha}-particles. The studies carried out by current-DLTS technique allowed to associate the observed increase of the acceptor concentration with the near mid-gap acceptor level at EV+0.56 eV. This level can be apparently associated with V2O defects recognized previously to be responsible for the space charge sign inversion in the irradiated n-type Si detectors.
The Low Energy Neutron Source (LENS) is an accelerator-based pulsed cold neutron facility under construction at the Indiana University Cyclotron Facility (IUCF). The idea behind LENS is to produce pulsed cold neutron beams starting with ~MeV neutrons from (p,n) reactions in Be which are moderated to meV energies and extracted from a small solid angle for use in neutron instruments which can operate efficiently with relatively broad (~1 msec) neutron pulse widths. Although the combination of the features and operating parameters of this source is unique at present, the neutronic design possesses several features similar to those envisioned for future neutron facilities such as long-pulsed spallation sources (LPSS) and very cold neutron (VCN) sources. We describe the underlying ideas and design details of the target/moderator/reflector system (TMR) and compare measurements of its brightness, energy spectrum, and emission time distribution under different moderator configurations with MCNP simulations. Brightness measurements using an ambient temperature water moderator agree with MCNP simulations within the 20% accuracy of the measurement. The measured neutron emission time distribution from a solid methane moderator is in agreement with simulation and the cold neutron flux is sufficient for neutron scattering studies of materials. We describe some possible modifications to the existing design which would increase the cold neutron brightness with negligible effect on the emission time distribution.
We report on the design and the expected performance of a low cost hybrid detection system suitable for operation as an autonomous unit in strong electromagnetic noise environments. The system consists of three particle detectors (scintillator module s) and one or more RF antennas. The particle detector units are used to detect air showers and to supply the trigger to the RF Data acquisition electronics. The hardware of the detector as well as the expected performance in detecting and reconstructing the angular direction for the shower axis is presented. Calibration data are used to trim the simulation parameters and to investigate the response to high energy ($E>10^{15} eV$) extensive air showers.
We report on a measurement of the neutron detection efficiency in NaI crystals in the Crystal Ball detector obtained from a study of single p0 photoproduction on deuterium using the tagged photon beam at the Mainz Microtron. The results were obtained up to a neutron energy of 400 MeV. They are compared to previous measurements made more than 15 years ago at the pion beam at the BNL AGS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا