We report on a measurement of the neutron detection efficiency in NaI crystals in the Crystal Ball detector obtained from a study of single p0 photoproduction on deuterium using the tagged photon beam at the Mainz Microtron. The results were obtained up to a neutron energy of 400 MeV. They are compared to previous measurements made more than 15 years ago at the pion beam at the BNL AGS.
This paper describes a novel directional neutron detector prototype. The low pressure time projection chamber uses a mix of helium and CF4 gases. The detector reconstructs the energy and angular distribution of fast neutron recoils. This paper report
s results of energy calibration using an alpha source and angular reconstruction studies using a collimated neutron source. The best performance is obtained with a 12.5% CF4 gas mixture. At low energies the target for fast neutrons transitions is primarily helium, while at higher energies, the fluorine contributes as a target. The reconstruction efficiency is both energy and target dependent. For neutrons with energies less than 20 MeV, the reconstruction efficiency is ~40% for fluorine recoils and ~60% for helium recoils.
We present new results on the radiopurity of a 3.4-kg NaI(Tl) crystal scintillator operated in the SABRE proof-of-principle detector setup. The amount of potassium contamination, determined by the direct counting of radioactive $^{40}$K, is found to
be $2.2pm1.5$ ppb, lowest ever achieved for NaI(Tl) crystals. With the active veto, the average background rate in the crystal in the 1-6 keV energy region-of-interest (ROI) is $1.20pm0.05$ counts/day/kg/keV, which is a breakthrough since the DAMA/LIBRA experiment. Our background model indicates that the rate is dominated by $^{210}$Pb and that about half of this contamination is located in the PTFE reflector. We discuss ongoing developments of the crystal manufacture aimed at the further reduction of the background, including data from purification by zone refining. A projected background rate lower than $sim$0.2 counts/day/kg/keV in the ROI is within reach. These results represent a benchmark for the development of next-generation NaI(Tl) detector arrays for the direct detection of dark matter particles.
NaI(Tl) crystals are used as particle detectors in a variety of rare-event search experiments because of their superb light-emission quality. The crystal light yield is generally high, above 10 photoelectrons per keV, and its emission spectrum is pea
ked around 400 nm, which matches well to the sensitive region of bialkali photocathode photomultiplier tubes. However, since NaI(Tl) crystals are hygroscopic, a sophisticated method of encapsulation has to be applied that prevents moisture from chemically attacking the crystal and thereby degrading the emission. In addition, operation with low energy thresholds, which is essential for a number of new phenomenon searches, is usually limited by the crystal light yield; in these cases higher light yields can translate into lower thresholds that improve the experimental sensitivity. Here we describe the development of an encapsulation technique that simplifies the overall design by attaching the photo sensors directly to the crystal so that light losses are minimized. The light yield of a NaI(Tl) crystal encapsulated with this technique was improved by more than 30%, and as many as 22 photoelectrons per keV have been measured. Consequently, the energy threshold can be lowered and the energy resolution improved. Detectors with this higher light yield are sensitive to events with sub-keV energies and well suited for low-mass dark matter particle searches and measurements of neutrino-nucleus coherent scattering.
A neutron lifetime measurement conducted at the Japan Proton Accelerator Research Complex (J-PARC) is counting the number of electrons from neutron decays with a time projection chamber (TPC). The $gamma$ rays produced in the TPC cause irreducible ba
ckground events. To achieve the precise measurement, the inner walls of the TPC consist of $^6$Li-enriched lithium-fluoride ($^6$LiF) tiles to suppress the amount of $gamma$ rays. In order to estimate the amount of $gamma$ rays from the $^{6}{rm LiF}$ tile, prompt gamma ray analysis (PGA) measurements were performed using germanium detectors. We reconstructed the measured $gamma$-ray energy spectrum using a Monte Carlo simulation with the stripping method. Comparing the measured spectrum with a simulated one, the number of $gamma$ rays emitted from the$^{6}{rm LiF}$ tile was $(2.3^{+0.7}_{-0.3}) times 10^{-4}$ per incident neutron. This is $1.4^{+0.5}_{-0.2}$ times the value assumed for a mole fraction of the $^{6}{rm LiF}$ tile. We concluded that the amount of $gamma$ rays produced from the $^{6}{rm LiF}$ tile is not more twice the originally assumed value.
In this paper we present a method of scintillation detector energy calibration using the gamma-rays. The technique is based on the Compton scattering of gamma-rays in a scintillation detector and subsequent photoelectric absorption of the scattered p
hoton in the Ge-detector. The novelty of this method is that the source of gamma rays, the germanium and scintillation detectors are immediately arranged adjacent to each other. The method presents an effective solution for the detectors consisting of a low atomic number materials, when the ratio between Compton effect and photoelectric absorption is large and the mean path of gamma-rays is comparable to the size of the detector. The technique can be used for the precision measurements of the scintillator light yield dependence on the electron energy.
M. Martemianov
,V. Kulikov
,B. T. Demissie
.
(2015)
.
"A new measurement of the neutron detection efficiency for the NaI Crystal Ball detector"
.
Kulikov Viacheslav v
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا