ﻻ يوجد ملخص باللغة العربية
We consider isotropic and monochromatic photon emissions from equatorial emitters moving along future-directed timelike geodesics in the near-horizon extremal Kerr (NHEK) and near-horizon near-extremal Kerr (near-NHEK) regions, to asymptotic infinity. We obtain numerical results for the photon escaping probability (PEP) and derive analytical expressions for the maximum observable blueshift (MOB) of the escaping photons, both depending on the emission radius and the emitters proper motion. In particular, we find that for all anti-plunging or deflecting emitters that can eventually reach to asymptotic infinity, the PEP is greater than $50%$ while for all plunging emitters the PEP is less than $55%$, and for the bounded emitters in the (near-)NHEK region, the PEP is always less than $59%$. In addition, for the emitters on unstable circular orbits in the near-NHEK region, the PEP decreases from $55%$ to $50%$ as the orbital radius decreases from the one of the innermost stable circular orbit to the one of the horizon. Furthermore, we show how the orientation of the emitters motion along the radial or azimuthal direction affects the PEP and the MOB of the emitted photons.
We revisit the spectrum of linear axisymmetric gravitational perturbations of the (near-)extreme Kerr black hole. Our aim is to characterise those perturbations that are responsible for the deviations away from extremality, and to contrast them with
We consider monochromatic and isotropic photon emission from circular equatorial Kerr orbiters. We derive analytic expressions for the photon escape probability and the redshift-dependent total flux collected on the celestial sphere as a function of
We have studied electromagnetic line emissions from near-horizon region in the extremal Kerr-Taub-NUT black hole spacetime and then probe the effects of NUT charge on the electromagnetic line emissions. Due to the presence of the NUT charge, the equa
The region of spacetime near the event horizon of a black hole can be viewed as a deep potential well at large gravitational redshift relative to distant observers. However, matter orbiting in this region travels at relativistic speeds and can impart
In this work we analyze some judiciously chosen solutions of Kerr Black Holes with Scalar Hair (KBHsSH) of special interest for Gravitational Wave (GW) events originated from Extreme Mass Ratio Inspirals (EMRIs). Because of the off-center distributio