ترغب بنشر مسار تعليمي؟ اضغط هنا

Timing Offset Calibration of CZTI instrument aboard ASTROSAT

101   0   0.0 ( 0 )
 نشر من قبل Avishek Basu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The radio as well as the high energy emission mechanism in pulsars is yet not understood properly. A multi-wavelength study is likely to help in better understanding of such processes. The first Indian space-based observatory, ASTROSAT, has five instruments aboard, which cover the electromagnetic spectrum from infra-red (1300 $AA$) to hard X-ray (380 KeV). Cadmium Zinc Telluride Imager (CZTI), one of the five instruments is a hard X-ray telescope functional over an energy range of 20-380 KeV. We aim to estimate the timing offset introduced in the data acquisition pipeline of the instrument, which will help in time alignment of high energy time series with those from two other ground-based observatories, viz. the Giant Meterwave Radio Telescope (GMRT) and the Ooty Radio Telescope (ORT). PSR B0531+21 is a well-studied pulsar with nearly aligned radio and hard X-ray pulse profiles. We use simultaneous observations of this pulsar with the ASTROSAT, the ORT and the GMRT. The pulsar was especially observed using the ORT with almost daily cadence to obtain good timing solutions. We also supplement the ORT data with archival FERMI data for estimation of timing noise. The timing offset of ASTROSAT instruments was estimated from fits to arrival time data at the ASTROSAT and the radio observatories. We estimate the offset between the GMRT and the ASTROSAT-CZTI to be -4716 $pm$ 50 $mu s$. The corresponding offset with the ORT was -29639 $pm$ 50 $mu s$. The offsets between the GMRT and Fermi-LAT -5368 $pm$ 56 $mu s$. (Abridged)

قيم البحث

اقرأ أيضاً

The Cadmium Zinc Telluride Imager (CZTI) is an imaging instrument onboard AstroSat. This instrument operates as a nearly open all-sky detector above ~60 keV, making possible long integrations irrespective of the spacecraft pointing. We present a tech nique based on the AstroSat-CZTI data to explore the hard X-ray characteristics of the $gamma$-ray pulsar population. We report highly significant ($sim 30sigma$) detection of hard X-ray (60--380 keV) pulse profile of the Crab pulsar using $sim$5000 ks of CZTI observations within 5 to 70 degrees of Crab position in the sky, using a custom algorithm developed by us. Using Crab as our test source, we estimate the off-axis sensitivity of the instrument and establish AstroSat-CZTI as a prospective tool in investigating hard X-ray characteristics of $gamma$-ray pulsars as faint as 10 mCrab.
AstroSat is Indias first space-based astronomical observatory, launched on September 28, 2015. One of the payloads aboard AstroSat is the Cadmium Zinc Telluride Imager (CZTI), operating at hard X-rays. CZTI employs a two-dimensional coded aperture ma sk for the purpose of imaging. In this paper, we discuss various image reconstruction algorithms adopted for the test and calibration of the imaging capability of CZTI and present results from CZTI on-ground as well as in-orbit image calibration.
Cadmium-Zinc-Telluride Imager (CZTI) is one of the five payloads on-board recently launched Indian astronomy satellite AstroSat. CZTI is primarily designed for simultaneous hard X-ray imaging and spectroscopy of celestial X-ray sources. It employs th e technique of coded mask imaging for measuring spectra in the energy range of 20 - 150 keV. It was the first scientific payload of AstroSat to be switched on after one week of the launch and was made operational during the subsequent week. Here we present preliminary results from the performance verification phase observations and discuss the in-orbit performance of CZTI.
We present spectro-polarimetric analysis of thisgrb using data from asat, fermi, and swift, to provide insights into the physical mechanisms of the prompt radiation and the jet geometry. Prompt emission from thisgrb was very bright (fluence $>10^{- 4}$~ergs~cm$^{-2}$) and had a complex structure composed of the superimposition of several pulses. The energy spectra deviate from the typical Band function to show a low energy peak $sim 15$~keV --- which we interpret as a power-law with two breaks, with a synchrotron origin. Alternately, the prompt spectra can also be interpreted as Comptonized emission, or a blackbody combined with a Band function. Time-resolved analysis confirms the presence of the low energy component, while the peak energy is found to be confined in the range of 100--200~keV. Afterglow emission detected by fermi-LAT is typical of an external shock model, and we constrain the initial Lorentz factor using the peak time of the emission. swift-XRT measurements of the afterglow show an indication for a jet break, allowing us to constrain the jet opening angle to $>$ 6$degr$. Detection of a large number of Compton scattered events by asat-CZTI provides an opportunity to study hard X-ray polarization of the prompt emission. We find that the burst has high, time-variable polarization, with the emission {bf have higher polarization} at energies above the peak energy. We discuss all observations in the context of GRB models and polarization arising due to {bf due to physical or geometric effects:} synchrotron emission from multiple shocks with ordered or random magnetic fields, Poynting flux dominated jet undergoing abrupt magnetic dissipation, sub-photospheric dissipation, a jet consisting of fragmented fireballs, and the Comptonization model.
375 - Abhay Kumar 2021
The Cadmium Zinc Telluride Imager (CZTI) onboard AstroSat is designed for hard X-ray imaging and spectroscopy in the energy range of 20 - 100 keV. The CZT detectors are of 5 mm thickness and hence have good efficiency for Compton interactions beyond 100 keV. The polarisation analysis using CZTI relies on such Compton events and have been verified experimentally. The same Compton events can also be used to extend the spectroscopy up to 380 keV. Further, it has been observed that about 20% pixels of the CZTI detector plane have low gain, and they are excluded from the primary spectroscopy. If these pixels are included, then the spectroscopic capability of CZTI can be extended up to 500 keV and further up to 700 keV with a better gain calibration in the future. Here we explore the possibility of using the Compton events as well as the low gain pixels to extend the spectroscopic energy range of CZTI for ON-axis bright X-ray sources. We demonstrate this technique using Crab observations and explore its sensitivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا