ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Quality of Uncertainty Estimates from Neural Network Potential Ensembles

217   0   0.0 ( 0 )
 نشر من قبل Leonid Kahle
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural network potentials (NNPs) combine the computational efficiency of classical interatomic potentials with the high accuracy and flexibility of the ab initio methods used to create the training set, but can also result in unphysical predictions when employed outside their training set distribution. Estimating the epistemic uncertainty of an NNP is required in active learning or on-the-fly generation of potentials. Inspired from their use in other machine-learning applications, NNP ensembles have been used for uncertainty prediction in several studies, with the caveat that ensembles do not provide a rigorous Bayesian estimate of the uncertainty. To test whether NNP ensembles provide accurate uncertainty estimates, we train such ensembles in four different case studies, and compare the predicted uncertainty with the errors on out-of-distribution validation sets. Our results indicate that NNP ensembles are often overconfident, underestimating the uncertainty of the model, and require to be calibrated for each system and architecture. We also provide evidence that Bayesian NNPs, obtained by sampling the posterior distribution of the model parameters using Monte-Carlo techniques, can provide better uncertainty estimates.

قيم البحث

اقرأ أيضاً

GeTe is a prototypical phase change material of high interest for applications in optical and electronic non-volatile memories. We present an interatomic potential for the bulk phases of GeTe, which is created using a neural network (NN) representati on of the potential-energy surface obtained from reference calculations based on density functional theory. It is demonstrated that the NN potential provides a close to ab initio quality description of a number of properties of liquid, crystalline and amorphous GeTe. The availability of a reliable classical potential allows addressing a number of issues of interest for the technological applications of phase change materials, which are presently beyond the capability of first principles molecular dynamics simulations.
173 - L. Tang , Z. J. Yang , T. Q. Wen 2020
An interatomic potential for Al-Tb alloy around the composition of Al90Tb10 was developed using the deep neural network (DNN) learning method. The atomic configurations and the corresponding total potential energies and forces on each atom obtained f rom ab initio molecular dynamics (AIMD) simulations are collected to train a DNN model to construct the interatomic potential for Al-Tb alloy. We show the obtained DNN model can well reproduce the energies and forces calculated by AIMD. Molecular dynamics (MD) simulations using the DNN interatomic potential also accurately describe the structural properties of Al90Tb10 liquid, such as the partial pair correlation functions (PPCFs) and the bond angle distributions, in comparison with the results from AIMD. Furthermore, the developed DNN interatomic potential predicts the formation energies of crystalline phases of Al-Tb system with the accuracy comparable to ab initio calculations. The structure factor of Al90Tb10 metallic glass obtained by MD simulation using the developed DNN interatomic potential is also in good agreement with the experimental X-ray diffraction data.
Despite their rich information content, electronic structure data amassed at high volumes in ab initio molecular dynamics simulations are generally under-utilized. We introduce a transferable high-fidelity neural network representation of such data i n the form of tight-binding Hamiltonians for crystalline materials. This predictive representation of ab initio electronic structure, combined with machine-learning boosted molecular dynamics, enables efficient and accurate electronic evolution and sampling. When applied to a one-dimension charge-density wave material, carbyne, we are able to compute the spectral function and optical conductivity in the canonical ensemble. The spectral functions evaluated during soliton-antisoliton pair annihilation process reveal significant renormalization of low-energy edge modes due to retarded electron-lattice coupling beyond the Born-Oppenheimer limit. The availability of an efficient and reusable surrogate model for the electronic structure dynamical system will enable calculating many interesting physical properties, paving way to previously inaccessible or challenging avenues in materials modeling.
We compute the thermal conductivity of water within linear response theory from equilibrium molecular dynamics simulations, by adopting two different approaches. In one, the potential energy surface (PES) is derived on the fly from the electronic gro und state of density functional theory (DFT) and the corresponding analytical expression is used for the energy flux. In the other, the PES is represented by a deep neural network (DNN) trained on DFT data, whereby the PES has an explicit local decomposition and the energy flux takes a particularly simple expression. By virtue of a gauge invariance principle, established by Marcolongo, Umari, and Baroni, the two approaches should be equivalent if the PES were reproduced accurately by the DNN model. We test this hypothesis by calculating the thermal conductivity, at the GGA (PBE) level of theory, using the direct formulation and its DNN proxy, finding that both approaches yield the same conductivity, in excess of the experimental value by approximately 60%. Besides being numerically much more efficient than its direct DFT counterpart, the DNN scheme has the advantage of being easily applicable to more sophisticated DFT approximations, such as meta-GGA and hybrid functionals, for which it would be hard to derive analytically the expression of the energy flux. We find in this way, that a DNN model, trained on meta-GGA (SCAN) data, reduce the deviation from experiment of the predicted thermal conductivity by about 50%, leaving the question open as to whether the residual error is due to deficiencies of the functional, to a neglect of nuclear quantum effects in the atomic dynamics, or, likely, to a combination of the two.
121 - He Li , Zun Wang , Nianlong Zou 2021
The marriage of density functional theory (DFT) and deep learning methods has the potential to revolutionize modern research of material science. Here we study the crucial problem of representing DFT Hamiltonian for crystalline materials of arbitrary configurations via deep neural network. A general framework is proposed to deal with the infinite dimensionality and covariance transformation of DFT Hamiltonian matrix in virtue of locality and use message passing neural network together with graph representation for deep learning. Our example study on graphene-based systems demonstrates that high accuracy ($sim$meV) and good transferability can be obtained for DFT Hamiltonian, ensuring accurate predictions of materials properties without DFT. The Deep Hamiltonian method provides a solution to the accuracy-efficiency dilemma of DFT and opens new opportunities to explore large-scale materials and physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا