ﻻ يوجد ملخص باللغة العربية
There has been a surge of recent interest in sociocultural diversity in machine learning (ML) research, with researchers (i) examining the benefits of diversity as an organizational solution for alleviating problems with algorithmic bias, and (ii) proposing measures and methods for implementing diversity as a design desideratum in the construction of predictive algorithms. Currently, however, there is a gap between discussions of measures and benefits of diversity in ML, on the one hand, and the broader research on the underlying concepts of diversity and the precise mechanisms of its functional benefits, on the other. This gap is problematic because diversity is not a monolithic concept. Rather, different concepts of diversity are based on distinct rationales that should inform how we measure diversity in a given context. Similarly, the lack of specificity about the precise mechanisms underpinning diversitys potential benefits can result in uninformative generalities, invalid experimental designs, and illicit interpretations of findings. In this work, we draw on research in philosophy, psychology, and social and organizational sciences to make three contributions: First, we introduce a taxonomy of different diversity concepts from philosophy of science, and explicate the distinct epistemic and political rationales underlying these concepts. Second, we provide an overview of mechanisms by which diversity can benefit group performance. Third, we situate these taxonomies--of concepts and mechanisms--in the lifecycle of sociotechnical ML systems and make a case for their usefulness in fair and accountable ML. We do so by illustrating how they clarify the discourse around diversity in the context of ML systems, promote the formulation of more precise research questions about diversitys impact, and provide conceptual tools to further advance research and practice.
Web sites where users create and rate content as well as form networks with other users display long-tailed distributions in many aspects of behavior. Using behavior on one such community site, Essembly, we propose and evaluate plausible mechanisms t
Programming education is becoming important as demands on computer literacy and coding skills are growing. Despite the increasing popularity of interactive online learning systems, many programming courses in schools have not changed their teaching f
Labelling user data is a central part of the design and evaluation of pervasive systems that aim to support the user through situation-aware reasoning. It is essential both in designing and training the system to recognise and reason about the situat
We present an automated method for measuring media bias. Inferring which newspaper published a given article, based only on the frequencies with which it uses different phrases, leads to a conditional probability distribution whose analysis lets us a
Representativeness is a foundational yet slippery concept. Though familiar at first blush, it lacks a single precise meaning. Instead, meanings range from typical or characteristic, to a proportionate match between sample and population, to a more ge