ترغب بنشر مسار تعليمي؟ اضغط هنا

A Scenario-oriented Approach to Energy-Reserve Joint Procurement and Pricing

391   0   0.0 ( 0 )
 نشر من قبل Jiantao Shi
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider some crucial problems related to the secure and reliable operation of power systems with high renewable penetrations: how much reserve should we procure, how should reserve resources distribute among different locations, and how should we price reserve and charge uncertainty sources. These issues have so far been largely addressed empirically. In this paper, we first develop a scenario-oriented energy-reserve co-optimization model, which directly connects reserve procurement with possible outages and load/renewable power fluctuations without the need for empirical reserve requirements. Accordingly, reserve can be optimally procured system-wide to handle all possible future uncertainties with the minimum expected system total cost. Based on the proposed model, marginal pricing approaches are developed for energy and reserve, respectively. Locational uniform pricing is established for energy, and the similar property is also established for the combination of reserve and re-dispatch. In addition, properties of cost recovery for generators and revenue adequacy for the system operator are also proven.

قيم البحث

اقرأ أيضاً

Current contingency reserve criteria ignore the likelihood of individual contingencies and, thus, their impact on system reliability and risk. This paper develops an iterative approach, inspired by the current security-constrained unit commitment (SC UC) practice, enabling system operators to determine risk-cognizant contingency reserve requirements and their allocation with minimal alterations to the current SCUC practice. The proposed approach uses generator and transmission system reliability models, including failure-to synchronize and adverse conditions, to compute contingency probabilities, which inform a risk-based system reliability assessment, and ensures reserve deliverability by learning the response of generators to post-contingency states within the SCUC. The effectiveness of the proposed approach is demonstrated using the Grid Modernization Lab Consortium update of the Reliability Test System.
This paper presents a method to determine the optimal location, energy capacity, and power rating of distributed battery energy storage systems at multiple voltage levels to accomplish grid control and reserve provision. We model operational scenario s at a one-hour resolution, where deviations of stochastic loads and renewable generation (modeled through scenarios) from a day-ahead unit commitment and violations of grid constraints are compensated by either dispatchable power plants (conventional reserves) or injections from battery energy storage systems. By plugging-in costs of conventional reserves and capital costs of converter power ratings and energy storage capacity, the model is able to derive requirements for storage deployment that achieve the technical-economical optimum of the problem. The method leverages an efficient linearized formulation of the grid constraints of both the HV (High Voltage) and MV (Medium Voltage) grids while still retaining fundamental modeling aspects of the power system (such as transmission losses, effect of reactive power, OLTC at the MV/HV interface, unideal efficiency of battery energy storage systems) and models of conventional generator. A proof-of-concept by simulations is provided with the IEEE 9-bus system coupled with the CIGRE benchmark system for MV grids, realistic costs of power reserves, active power rating and energy capacity of batteries, and load and renewable generation profile from real measurements.
106 - Xingyu Lei , Student Member , IEEE 2020
Chance-constrained optimization (CCO) has been widely used for uncertainty management in power system operation. With the prevalence of wind energy, it becomes possible to consider the wind curtailment as a dispatch variable in CCO. However, the wind curtailment will cause impulse for the uncertainty distribution, yielding challenges for the chance constraints modeling. To deal with that, a data-driven framework is developed. By modeling the wind curtailment as a cap enforced on the wind power output, the proposed framework constructs a Gaussian process (GP) surrogate to describe the relationship between wind curtailment and the chance constraints. This allows us to reformulate the CCO with wind curtailment as a mixed-integer second-order cone programming (MI-SOCP) problem. An error correction strategy is developed by solving a convex linear programming (LP) to improve the modeling accuracy. Case studies performed on the PJM 5-bus and IEEE 118-bus systems demonstrate that the proposed method is capable of accurately accounting the influence of wind curtailment dispatch in CCO.
Recently, chance-constrained stochastic electricity market designs have been proposed to address the shortcomings of scenario-based stochastic market designs. In particular, the use of chance-constrained market-clearing avoids trading off in-expectat ion and per-scenario characteristics and yields unique energy and reserves prices. However, current formulations rely on symmetric control policies based on the aggregated system imbalance, which restricts balancing reserve providers in their energy and reserve commitments. This paper extends existing chance-constrained market-clearing formulations by leveraging node-to-node and asymmetric balancing reserve policies and deriving the resulting energy and reserve prices. The proposed node-to-node policy allows for relating the remuneration of balancing reserve providers and payment of uncertain resources using a marginal cost-based approach. Further, we introduce asymmetric balancing reserve policies into the chance-constrained electricity market design and show how this additional degree of freedom affects market outcomes.
This paper presents a novel solution technique for scheduling multi-energy system (MES) in a commercial urban building to perform price-based demand response and reduce energy costs. The MES scheduling problem is formulated as a mixed integer nonline ar program (MINLP), a non-convex NPhard problem with uncertainties due to renewable generation and demand. A model predictive control approach is used to handle the uncertainties and price variations. This in-turn requires solving a time-coupled multi-time step MINLP during each time-epoch which is computationally intensive. This investigation proposes an approach called the Scenario-Based Branch-and-Bound (SB3), a light-weight solver to reduce the computational complexity. It combines the simplicity of convex programs with the ability of meta-heuristic techniques to handle complex nonlinear problems. The performance of the SB3 solver is validated in the Cleantech building, Singapore and the results demonstrate that the proposed algorithm reduces energy cost by about 17.26% and 22.46% as against solving a multi-time step heuristic optimization model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا