ترغب بنشر مسار تعليمي؟ اضغط هنا

Electricity and Reserve Pricing in Chance-Constrained Electricity Markets with Asymmetric Balancing Reserve Policies

169   0   0.0 ( 0 )
 نشر من قبل Alvaro Gonzalez-Castellanos
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, chance-constrained stochastic electricity market designs have been proposed to address the shortcomings of scenario-based stochastic market designs. In particular, the use of chance-constrained market-clearing avoids trading off in-expectation and per-scenario characteristics and yields unique energy and reserves prices. However, current formulations rely on symmetric control policies based on the aggregated system imbalance, which restricts balancing reserve providers in their energy and reserve commitments. This paper extends existing chance-constrained market-clearing formulations by leveraging node-to-node and asymmetric balancing reserve policies and deriving the resulting energy and reserve prices. The proposed node-to-node policy allows for relating the remuneration of balancing reserve providers and payment of uncertain resources using a marginal cost-based approach. Further, we introduce asymmetric balancing reserve policies into the chance-constrained electricity market design and show how this additional degree of freedom affects market outcomes.

قيم البحث

اقرأ أيضاً

In an electric power system, demand fluctuations may result in significant ancillary cost to suppliers. Furthermore, in the near future, deep penetration of volatile renewable electricity generation is expected to exacerbate the variability of demand on conventional thermal generating units. We address this issue by explicitly modeling the ancillary cost associated with demand variability. We argue that a time-varying price equal to the suppliers instantaneous marginal cost may not achieve social optimality, and that consumer demand fluctuations should be properly priced. We propose a dynamic pricing mechanism that explicitly encourages consumers to adapt their consumption so as to offset the variability of demand on conventional units. Through a dynamic game-theoretic formulation, we show that (under suitable convexity assumptions) the proposed pricing mechanism achieves social optimality asymptotically, as the number of consumers increases to infinity. Numerical results demonstrate that compared with marginal cost pricing, the proposed mechanism creates a stronger incentive for consumers to shift their peak load, and therefore has the potential to reduce the need for long-term investment in peaking plants.
Renewable-dominant power systems explore options to procure virtual inertia services from non-synchronous resources (e.g., batteries, wind turbines) in addition to inertia traditionally provided by synchronous resources (e.g., thermal generators). Th is paper designs a stochastic electricity market that produces co-optimized and efficient prices for energy, reserve and inertia. We formulate a convex chance-constrained stochastic unit commitment model with inertia requirements and obtain equilibrium energy, reserve and inertia prices using convex duality. Numerical experiments on an illustrative system and a modified IEEE 118-bus systems show the performance of the proposed pricing mechanism.
106 - Xingyu Lei , Student Member , IEEE 2020
Chance-constrained optimization (CCO) has been widely used for uncertainty management in power system operation. With the prevalence of wind energy, it becomes possible to consider the wind curtailment as a dispatch variable in CCO. However, the wind curtailment will cause impulse for the uncertainty distribution, yielding challenges for the chance constraints modeling. To deal with that, a data-driven framework is developed. By modeling the wind curtailment as a cap enforced on the wind power output, the proposed framework constructs a Gaussian process (GP) surrogate to describe the relationship between wind curtailment and the chance constraints. This allows us to reformulate the CCO with wind curtailment as a mixed-integer second-order cone programming (MI-SOCP) problem. An error correction strategy is developed by solving a convex linear programming (LP) to improve the modeling accuracy. Case studies performed on the PJM 5-bus and IEEE 118-bus systems demonstrate that the proposed method is capable of accurately accounting the influence of wind curtailment dispatch in CCO.
The societys insatiable appetites for personal data are driving the emergency of data markets, allowing data consumers to launch customized queries over the datasets collected by a data broker from data owners. In this paper, we study how the data br oker can maximize her cumulative revenue by posting reasonable prices for sequential queries. We thus propose a contextual dynamic pricing mechanism with the reserve price constraint, which features the properties of ellipsoid for efficient online optimization, and can support linear and non-linear market value models with uncertainty. In particular, under low uncertainty, our pricing mechanism provides a worst-case regret logarithmic in the number of queries. We further extend to other similar application scenarios, including hospitality service, online advertising, and loan application, and extensively evaluate three pricing instances of noisy linear query, accommodation rental, and impression over MovieLens 20M dataset, Airbnb listings in U.S. major cities, and Avazu mobile ad click dataset, respectively. The analysis and evaluation results reveal that our proposed pricing mechanism incurs low practical regret, online latency, and memory overhead, and also demonstrate that the existence of reserve price can mitigate the cold-start problem in a posted price mechanism, and thus can reduce the cumulative regret.
390 - Jiantao Shi , Ye Guo , Lang Tong 2021
We consider some crucial problems related to the secure and reliable operation of power systems with high renewable penetrations: how much reserve should we procure, how should reserve resources distribute among different locations, and how should we price reserve and charge uncertainty sources. These issues have so far been largely addressed empirically. In this paper, we first develop a scenario-oriented energy-reserve co-optimization model, which directly connects reserve procurement with possible outages and load/renewable power fluctuations without the need for empirical reserve requirements. Accordingly, reserve can be optimally procured system-wide to handle all possible future uncertainties with the minimum expected system total cost. Based on the proposed model, marginal pricing approaches are developed for energy and reserve, respectively. Locational uniform pricing is established for energy, and the similar property is also established for the combination of reserve and re-dispatch. In addition, properties of cost recovery for generators and revenue adequacy for the system operator are also proven.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا