ﻻ يوجد ملخص باللغة العربية
Despite tremendous investigations, a quantum spin liquid state realized in spin-1/2 kagome Heisenberg antiferromagnet remains largely elusive. In herbertsmithite ZnCu$_3$(OH)$_6$Cl$_2$, a quantum spin liquid candidate on the perfect kagome lattice, precisely characterizing the intrinsic physics of the kagome layers is extremely challenging due to the presence of interlayer Cu/Zn antisite disorder within its crystal structure. Here we measured the specific heat and thermal conductivity of single crystal herbertsmithite in magnetic fields with high resolution. Our results are highlighted by the excellent scaling collapse of the intrinsic magnetic specific heat contribution arising from the kagome layers as a function of $T/H$ (temperature/magnetic field). In addition, no residual linear term in the thermal conductivity $kappa/T(Trightarrow 0)$ is observed in zero and applied magnetic fields, indicating the absence of itinerant gapless excitations. These results suggest a new picture for a quantum spin liquid state of the kagome layers of herbertsmithite, wherein localized orphan spins arise and interact with random exchanges in conjunction with a non-itinerant quantum spin liquid.
Measuring the specific heat of herbertsmithite single crystals in high magnetic fields (up to $34$ T) allows us to isolate the low-temperature kagome contribution while shifting away extrinsic Schottky-like contributions. The kagome contribution foll
Employing complementary torque magnetometry and electron spin resonance on single crystals of herbertsmithite, the closest realization to date of a quantum kagome antiferromagnet featuring a spin-liquid ground state, we provide novel insight into dif
We determine dynamical response functions of the S=1/2 Heisenberg quantum antiferromagnet on the kagome lattice based on large-scale exact diagonalizations combined with a continued fraction technique. The dynamical spin structure factor has importan
Hexagonal antiferromagnets Cs$_2$Cu$_3$MF$_{12}$ (M = Zr, Hf and Sn) have uniform Kagome lattices of Cu$^{2+}$ with S = 1/2, whereas Rb$_2$Cu$_3$SnF$_{12}$ has a 2a by 2a enlarged cell as compared with the uniform Kagome lattice. The crystal data of
The dc-magnetization of the unique S=1/2 kagome antiferromagnet Herbertsmithite has been measured down to 0.1K. No sign of spin freezing is observed in agreement with former muSR and ac-susceptibility results. The low temperature magnetic response is