ﻻ يوجد ملخص باللغة العربية
The dc-magnetization of the unique S=1/2 kagome antiferromagnet Herbertsmithite has been measured down to 0.1K. No sign of spin freezing is observed in agreement with former muSR and ac-susceptibility results. The low temperature magnetic response is dominated by a defect contribution which exhibits a new energy scale $simeq 1$ K, likely reflecting the coupling of the defects. The defect component is saturated at low temperature by H>8T applied magnetic fields which enables us to estimate an upper bound for the non saturated intrinsic kagome susceptibility at T=1.7K.
Volborthite compound is one of the very few realizations of S=1/2 quantum spins on a highly frustrated kagome-like lattice. Low-T SQUID measurements reveal a broad magnetic transition below 2K which is further confirmed by a peak in the 51V nuclear s
We determine dynamical response functions of the S=1/2 Heisenberg quantum antiferromagnet on the kagome lattice based on large-scale exact diagonalizations combined with a continued fraction technique. The dynamical spin structure factor has importan
We clarify the existence of several magnetization plateaux for the kagome $S=1/2$ antiferromagnetic Heisenberg model in a magnetic field. Using approximate or exact localized magnon eigenstates, we are able to describe in a similar manner the plateau
Hexagonal antiferromagnets Cs$_2$Cu$_3$MF$_{12}$ (M = Zr, Hf and Sn) have uniform Kagome lattices of Cu$^{2+}$ with S = 1/2, whereas Rb$_2$Cu$_3$SnF$_{12}$ has a 2a by 2a enlarged cell as compared with the uniform Kagome lattice. The crystal data of
Despite tremendous investigations, a quantum spin liquid state realized in spin-1/2 kagome Heisenberg antiferromagnet remains largely elusive. In herbertsmithite ZnCu$_3$(OH)$_6$Cl$_2$, a quantum spin liquid candidate on the perfect kagome lattice, p