ترغب بنشر مسار تعليمي؟ اضغط هنا

Visualizing Classifier Adjacency Relations: A Case Study in Speaker Verification and Voice Anti-Spoofing

188   0   0.0 ( 0 )
 نشر من قبل Tomi Kinnunen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Whether it be for results summarization, or the analysis of classifier fusion, some means to compare different classifiers can often provide illuminating insight into their behaviour, (dis)similarity or complementarity. We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers in response to a common dataset. Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores and with close relation to receiver operating characteristic (ROC) and detection error trade-off (DET) analyses. While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems. The former are produced by a Gaussian mixture model system trained with VoxCeleb data whereas the latter stem from submissions to the ASVspoof 2019 challenge.

قيم البحث

اقرأ أيضاً

Automatic speaker verification (ASV) systems use a playback detector to filter out playback attacks and ensure verification reliability. Since current playback detection models are almost always trained using genuine and played-back speech, it may be possible to degrade their performance by transforming the acoustic characteristics of the played-back speech close to that of the genuine speech. One way to do this is to enhance speech stolen from the target speaker before playback. We tested the effectiveness of a playback attack using this method by using the speech enhancement generative adversarial network to transform acoustic characteristics. Experimental results showed that use of this enhanced stolen speech method significantly increases the equal error rates for the baseline used in the ASVspoof 2017 challenge and for a light convolutional neural network-based method. The results also showed that its use degrades the performance of a Gaussian mixture model-universal background model-based ASV system. This type of attack is thus an urgent problem needing to be solved.
We propose a learnable mel-frequency cepstral coefficient (MFCC) frontend architecture for deep neural network (DNN) based automatic speaker verification. Our architecture retains the simplicity and interpretability of MFCC-based features while allow ing the model to be adapted to data flexibly. In practice, we formulate data-driv
In this paper, we propose a new differentiable neural network alignment mechanism for text-dependent speaker verification which uses alignment models to produce a supervector representation of an utterance. Unlike previous works with similar approach es, we do not extract the embedding of an utterance from the mean reduction of the temporal dimension. Our system replaces the mean by a phrase alignment model to keep the temporal structure of each phrase which is relevant in this application since the phonetic information is part of the identity in the verification task. Moreover, we can apply a convolutional neural network as front-end, and thanks to the alignment process being differentiable, we can train the whole network to produce a supervector for each utterance which will be discriminative with respect to the speaker and the phrase simultaneously. As we show, this choice has the advantage that the supervector encodes the phrase and speaker information providing good performance in text-dependent speaker verification tasks. In this work, the process of verification is performed using a basic similarity metric, due to simplicity, compared to other more elaborate models that are commonly used. The new model using alignment to produce supervectors was tested on the RSR2015-Part I database for text-dependent speaker verification, providing competitive results compared to similar size networks using the mean to extract embeddings.
Although deep neural networks are successful for many tasks in the speech domain, the high computational and memory costs of deep neural networks make it difficult to directly deploy highperformance Neural Network systems on low-resource embedded dev ices. There are several mechanisms to reduce the size of the neural networks i.e. parameter pruning, parameter quantization, etc. This paper focuses on how to apply binary neural networks to the task of speaker verification. The proposed binarization of training parameters can largely maintain the performance while significantly reducing storage space requirements and computational costs. Experiment results show that, after binarizing the Convolutional Neural Network, the ResNet34-based network achieves an EER of around 5% on the Voxceleb1 testing dataset and even outperforms the traditional real number network on the text-dependent dataset: Xiaole while having a 32x memory saving.
In recent years, synthetic speech generated by advanced text-to-speech (TTS) and voice conversion (VC) systems has caused great harms to automatic speaker verification (ASV) systems, urging us to design a synthetic speech detection system to protect ASV systems. In this paper, we propose a new speech anti-spoofing model named ResWavegram-Resnet (RW-Resnet). The model contains two parts, Conv1D Resblocks and backbone Resnet34. The Conv1D Resblock is based on the Conv1D block with a residual connection. For the first part, we use the raw waveform as input and feed it to the stacked Conv1D Resblocks to get the ResWavegram. Compared with traditional methods, ResWavegram keeps all the information from the audio signal and has a stronger ability in extracting features. For the second part, the extracted features are fed to the backbone Resnet34 for the spoofed or bonafide decision. The ASVspoof2019 logical access (LA) corpus is used to evaluate our proposed RW-Resnet. Experimental results show that the RW-Resnet achieves better performance than other state-of-the-art anti-spoofing models, which illustrates its effectiveness in detecting synthetic speech attacks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا