ﻻ يوجد ملخص باللغة العربية
Dissipative quantum Rabi System, a finite-component system composed of a single two-level atom interacting with an optical cavity field mode, exhibits a quantum phase transition, which can be exploited to greatly enhance the estimation precision of unitary parameters (frequency and coupling strength). Here, using the quantum Langevin equation, standard mean field theory and adiabatic elimination, we investigate the quantum thermometry of a thermal bath surrounding the atom with quantum optical probes. With the increase of coupling strength between the atom and the cavity field, two kinds of singularities can be observed. One type of singularity is the exceptional point (EP) in the anti-parity-time (anti-$mathcal{PT}$) symmetrical cavity field. The other type of singularity is the critical point (CP) of phase transition from the normal to superradiant phase. We show that the optimal measurement precision occurs at the CP, instead of the EP. And the direct photon detection represents an excellent proxy for the optimal measurement near the CP. In the case where the thermal bath to be tested is independent of the extra thermal bath interacting with the cavity field, the estimation precision of the temperature always increases with the coupling strength. Oppositely, if the thermal bath to be tested is in equilibrium with the extra bath interacting with the cavity field, noises that suppress the information of the temperature will be introduced when increasing the coupling strength unless it is close to the CP.
We discuss the equilibrium and out of equilibrium dynamics of cavity QED in presence of dissipation beyond the standard perturbative treatment of losses. Using the dynamical polaron emph{ansatz} and Matrix Product State simulations, we discuss the ca
We introduce a general framework for thermometry based on collisional models, where ancillas probe the temperature of the environment through an intermediary system. This allows for the generation of correlated ancillas even if they are initially ind
As the minituarization of electronic devices, which are sensitive to temperature, grows apace, sensing of temperature with ever smaller probes is more important than ever. Genuinely quantum mechanical schemes of thermometry are thus expected to be cr
We propose the quantum simulation of the quantum Rabi model in all parameter regimes by means of detuned bichromatic sideband excitations of a single trapped ion. We show that current setups can reproduce, in particular, the ultrastrong and deep stro
We study the dynamic sensitivity of the quantum Rabi model, which exhibits quantum criticality in the finite-component-system case. This dynamic sensitivity can be detected by introducing an auxiliary two-level atom far-off-resonantly coupled to the