ﻻ يوجد ملخص باللغة العربية
We are concerned below with the characterization in a unital commutative real Banach algebra $mathbb{A}$ of continuous solutions of the Go{l}k{a}b-Schinzel functional equation (below), the general Popa groups they generate and the associated Goldie functional equation. This yields general structure theorems involving both linear and exponential homogeneity in $mathbb{A}$ for both these functional equations and also explict forms, in terms of the recently developed theory of multi-Popa groups [BinO3,4], both for the ring $C[0,1]$ and for the case of $mathbb{R}^{d}$ with componentwise product, clarifying the context of recent developments in [RooSW]. The case $mathbb{A}=mathbb{C}$ provides a new viewpoint on continuous complex-valued solutions of the primary equation by distinguishing analytic from real-analytic ones.
For a tuple $A=(A_0, A_1, ..., A_n)$ of elements in a unital Banach algebra ${mathcal B}$, its {em projective spectrum} $p(A)$ is defined to be the collection of $z=[z_0, z_1, ..., z_n]in pn$ such that $A(z)=z_0A_0+z_1A_1+... +z_nA_n$ is not invertib
The use of the properties of actions on an algebra to enrich the study of the algebra is well-trodden and still fashionable. Here, the notion and study of endomorphic elements of (Banach) algebras are introduced. This study is initiated, in the hope
In this sequel to arXiv1407.4089 by the second author, we extend to multi-dimensional (or infinite-dimensional) settings the Goldie equation arising in the general regular variation of `General regular variation, Popa groups and quantifier weakening,
In this the sequel to arXiv1910.05816, we derive a necessary and sufficient condition characterizing which real-valued continuous solutions of a multivariate Goldie functional equation express homomorphy between the multivariate Popa groups defined a
The $(k,a)$-generalised Fourier transform is the unitary operator defined using the $a$-deformed Dunkl harmonic oscillator. The main aim of this paper is to prove $L^p$-$L^q$ boundedness of $(k, a)$-generalised Fourier multipliers. To show the boun