ﻻ يوجد ملخص باللغة العربية
We show that in type-II superconductors a magnetic field applied transversely to correlated columnar disorder, drives a phase transition to a distinct smectic vortex glass (SmVG) state. SmVG is characterized by an infinitely anisotropic electrical transport, resistive (dissipationless) for current perpendicular to (along) columnar defects. Its positional order is also quite unusual, long-ranged with true Bragg peaks along columnar defects and logarithmically rough vortex lattice distortions with quasi-Bragg peaks transverse to columnar defects. For low temperatures and sufficiently weak columnar-only disorder, SmVG is a true topologically-ordered Bragg glass, characterized by a vanishing dislocation density. At sufficiently long scales the residual ever-present point disorder converts this state to a more standard, but highly anisotropic vortex glass.
A review is given on the theory of vortex-glass phases in impure type-II superconductors in an external field. We begin with a brief discussion of the effects of thermal fluctuations on the spontaneously broken U(1) and translation symmetries, on the
We study the disordered, multi-spiral solutions of two-dimensional homogeneous oscillatory media for parameter values at which the single spiral/vortex solution is fully stable. In the framework of the complex Ginzburg-Landau (CGLE) equation, we show
Understanding the physics of glass formation remains one of the major unsolved challenges of condensed matter science. As a material solidifies into a glass, it exhibits a spectacular slowdown of the dynamics upon cooling or compression, but at the s
We numerically study the relaxation dynamics of several glass-forming models to their inherent structures, following quenches from equilibrium configurations sampled across a wide range of temperatures. In a mean-field Mari-Kurchan model, we find tha
We investigate the effect of correlated disorder on Majorana zero modes (MZMs) bound to magnetic vortices in two-dimensional topological superconductors. By starting from a lattice model of interacting fermions with a $p_x pm i p_y$ superconducting g