ترغب بنشر مسار تعليمي؟ اضغط هنا

Mode-Coupling Theory of the Glass Transition: A Primer

121   0   0.0 ( 0 )
 نشر من قبل Liesbeth Janssen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the physics of glass formation remains one of the major unsolved challenges of condensed matter science. As a material solidifies into a glass, it exhibits a spectacular slowdown of the dynamics upon cooling or compression, but at the same time undergoes only minute structural changes. Among the numerous theories put forward to rationalize this complex behavior, Mode-Coupling Theory (MCT) stands out as the only framework that provides a fully first-principles-based description of glass phenomenology. This review outlines the key physical ingredients of MCT, its predictions, successes, and failures, as well as recent improvements of the theory. We also discuss the extension and application of MCT to the emerging field of non-equilibrium active soft matter



قيم البحث

اقرأ أيضاً

As in the preceding paper we aim at identifying the effective theory that describes the fluctuations of the local overlap with an equilibrium reference configuration close to a putative thermodynamic glass transition. We focus here on the case of fin ite-dimensional glass-forming systems, in particular supercooled liquids. The main difficulty for going beyond the mean-field treatment comes from the presence of diverging point-to-set spatial correlations. We introduce a variational low-temperature approximation scheme that allows us to account, at least in part, for the effect of these correlations. The outcome is an effective theory for the overlap fluctuations in terms of a random-field + random-bond Ising model with additional, power-law decaying, pair and multi-body interactions generated by the point-to-set correlations. This theory is much more tractable than the original problem. We check the robustness of the approximation scheme by applying it to a fully connected model already studied in the companion paper. We discuss the physical implications of this mapping for glass-forming liquids and the possibility it offers to determine the presence or not of a finite-temperature thermodynamic glass transition.
We consider the stationary state of a fluid comprised of inelastic hard spheres or disks under the influence of a random, momentum-conserving external force. Starting from the microscopic description of the dynamics, we derive a nonlinear equation of motion for the coherent scattering function in two and three space dimensions. A glass transition is observed for all coefficients of restitution, epsilon, at a critical packing fraction, phi_c(epsilon), below random close packing. The divergence of timescales at the glass-transition implies a dependence on compression rate upon further increase of the density - similar to the cooling rate dependence of a thermal glass. The critical dynamics for coherent motion as well as tagged particle dynamics is analyzed and shown to be non-universal with exponents depending on space dimension and degree of dissipation.
We present an extensive treatment of the generalized mode-coupling theory (GMCT) of the glass transition, which seeks to describe the dynamics of glass-forming liquids using only static structural information as input. This theory amounts to an infin ite hierarchy of coupled equations for multi-point density correlations, the lowest-order closure of which is equivalent to standard mode-coupling theory. Here we focus on simplified schematic GMCT hierarchies, which lack any explicit wavevector-dependence and therefore allow for greater analytical and numerical tractability. For one particular schematic model, we derive the unique analytic solution of the infinite hierarchy, and demonstrate that closing the hierarchy at finite order leads to uniform convergence as the closure level increases. We also show numerically that a similarly robust convergence pattern emerges for more generic schematic GMCT models, suggesting that the GMCT framework is generally convergent, even though no small parameter exists in the theory. Finally, we discuss how different effective weights on the high-order contributions ultimately control whether the transition is continuous, discontinuous, or strictly avoided, providing new means to relate structure to dynamics in glass-forming systems.
We numerically study the relaxation dynamics of several glass-forming models to their inherent structures, following quenches from equilibrium configurations sampled across a wide range of temperatures. In a mean-field Mari-Kurchan model, we find tha t relaxation changes from a power-law to an exponential decay below a well-defined temperature, consistent with recent findings in mean-field $p$-spin models. By contrast, for finite-dimensional systems, the relaxation is always algebraic, with a non-trivial universal exponent at high temperatures crossing over to a harmonic value at low temperatures. We demonstrate that this apparent evolution is controlled by a temperature-dependent population of localised excitations. Our work unifies several recent lines of studies aiming at a detailed characterization of the complex potential energy landscape of glass-formers.
It has been shown recently that predictions from Mode-Coupling Theory for the glass transition of hard-spheres become increasingly bad when dimensionality increases, whereas replica theory predicts a correct scaling. Nevertheless if one focuses on th e regime around the dynamical transition in three dimensions, Mode-Coupling results are far more convincing than replica theory predictions. It seems thus necessary to reconcile the two theoretic approaches in order to obtain a theory that interpolates between low-dimensional, Mode-Coupling results, and mean-field results from replica theory. Even though quantitative results for the dynamical transition issued from replica theory are not accurate in low dimensions, two different approximation schemes --small cage expansion and replicated Hyper-Netted-Chain (RHNC)-- provide the correct qualitative picture for the transition, namely a discontinuous jump of a static order parameter from zero to a finite value. The purpose of this work is to develop a systematic expansion around the RHNC result in powers of the static order parameter, and to calculate the first correction in this expansion. Interestingly, this correction involves the static three-body correlations of the liquid. More importantly, we separately demonstrate that higher order terms in the expansion are quantitatively relevant at the transition, and that the usual mode-coupling kernel, involving two-body direct correlation functions of the liquid, cannot be recovered from static computations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا