ﻻ يوجد ملخص باللغة العربية
We have deduced the structure of the ce{bromobenzene}--ce{I2} heterodimer and the ce{(bromobenzene)2} homodimer inside helium droplets using a combination of laser-induced alignment, Coulomb explosion imaging, and three-dimensional ion imaging. The complexes were fixed in a variety of orientations in the laboratory frame, then in each case multiply ionized by an intense laser pulse. A three dimensional ion imaging detector, including a Timepix3 detector allowed us to measure the correlations between velocity vectors of different fragments and, in conjunction with classical simulations, work backward to the initial structure of the complex prior to explosion. For the heterodimer, we find that the ce{I2} molecular axis intersects the phenyl ring of the bromobenzene approximately perpendicularly. The homodimer has a stacked parallel structure, with the two bromine atoms pointing in opposite directions. These results illustrate the ability of Coulomb explosion imaging to determine the structure of large complexes, and point the way toward real-time measurements of bimolecular reactions inside helium droplets.
We report on experimental results obtained from collisions of slow highly charged Ar9+ ions with a carbon monoxide dimer (CO)2 target. A COLTRIMS setup and a Coulomb explosion imaging approach are used to reconstruct the structure of the CO dimers. T
Dimers and trimers of carbonyl sulfide (OCS) molecules embedded in helium nanodroplets are aligned by a linearly polarized 160 ps long moderately intense laser pulse and Coulomb exploded with an intense 40 fs long probe pulse in order to determine th
We demonstrate ultrafast resonant energy absorption of rare-gas doped He nanodroplets from intense few-cycle (~10 fs) laser pulses. We find that less than 10 dopant atoms ignite the droplet to generate a non-spherical electronic nanoplasma resulting
Almost ten years ago, energetic neutral hydrogen atoms were detected after a strong-field double ionization of H$_2$. This process, called frustrated tunneling ionization, occurs when an ionized electron is recaptured after being driven back to its p
A new setup for doping helium nanodroplets by means of laser ablation at kilohertz repetition rate is presented. The doping process is characterized and two distinct regimes of laser ablation are identified. The setup is shown to be efficient and sta