ﻻ يوجد ملخص باللغة العربية
Almost ten years ago, energetic neutral hydrogen atoms were detected after a strong-field double ionization of H$_2$. This process, called frustrated tunneling ionization, occurs when an ionized electron is recaptured after being driven back to its parent ion by the electric field of a femtosecond laser. In the present study we demonstrate that a related process naturally occurs in clusters without the need of an external field: we observe a charge hopping that occurs during a Coulomb explosion of a small helium cluster, which leads to an energetic neutral helium atom. This claim is supported by theoretical evidence. As an analog to frustrated tunneling ionization, we term this process frustrated Coulomb explosion.
We report on experimental results obtained from collisions of slow highly charged Ar9+ ions with a carbon monoxide dimer (CO)2 target. A COLTRIMS setup and a Coulomb explosion imaging approach are used to reconstruct the structure of the CO dimers. T
We report ground state energies and structural properties for small helium clusters (4He) containing an H- impurity computed by means of variational and diffusion Monte Carlo methods. Except for 4He_2H- that has a noticeable contribution from colline
We have deduced the structure of the ce{bromobenzene}--ce{I2} heterodimer and the ce{(bromobenzene)2} homodimer inside helium droplets using a combination of laser-induced alignment, Coulomb explosion imaging, and three-dimensional ion imaging. The c
We predict the strong enhancement in the photoabsorption of small Mg clusters in the region of 4-5 eV due to the resonant excitation of the plasmon oscillations of cluster electrons. The photoabsorption spectra for neutral Mg clusters consisting of u
Cryogenic cluster beam experiments have provided crucial insights into the evolution of the metallic state from the atom to the bulk. Surprisingly, one of the most fundamental metallic properties, the ability of a metal to efficiently screen electric