ترغب بنشر مسار تعليمي؟ اضغط هنا

An Adversarial Transfer Network for Knowledge Representation Learning

85   0   0.0 ( 0 )
 نشر من قبل Huijuan Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Knowledge representation learning has received a lot of attention in the past few years. The success of existing methods heavily relies on the quality of knowledge graphs. The entities with few triplets tend to be learned with less expressive power. Fortunately, there are many knowledge graphs constructed from various sources, the representations of which could contain much information. We propose an adversarial embedding transfer network ATransN, which transfers knowledge from one or more teacher knowledge graphs to a target one through an aligned entity set without explicit data leakage. Specifically, we add soft constraints on aligned entity pairs and neighbours to the existing knowledge representation learning methods. To handle the problem of possible distribution differences between teacher and target knowledge graphs, we introduce an adversarial adaption module. The discriminator of this module evaluates the degree of consistency between the embeddings of an aligned entity pair. The consistency score is then used as the weights of soft constraints. It is not necessary to acquire the relations and triplets in teacher knowledge graphs because we only utilize the entity representations. Knowledge graph completion results show that ATransN achieves better performance against baselines without transfer on three datasets, CN3l, WK3l, and DWY100k. The ablation study demonstrates that ATransN can bring steady and consistent improvement in different settings. The extension of combining other knowledge graph embedding algorithms and the extension with three teacher graphs display the promising generalization of the adversarial transfer network.

قيم البحث

اقرأ أيضاً

The remarkable success of machine learning has fostered a growing number of cloud-based intelligent services for mobile users. Such a service requires a user to send data, e.g. image, voice and video, to the provider, which presents a serious challen ge to user privacy. To address this, prior works either obfuscate the data, e.g. add noise and remove identity information, or send representations extracted from the data, e.g. anonymized features. They struggle to balance between the service utility and data privacy because obfuscated data reduces utility and extracted representation may still reveal sensitive information. This work departs from prior works in methodology: we leverage adversarial learning to a better balance between privacy and utility. We design a textit{representation encoder} that generates the feature representations to optimize against the privacy disclosure risk of sensitive information (a measure of privacy) by the textit{privacy adversaries}, and concurrently optimize with the task inference accuracy (a measure of utility) by the textit{utility discriminator}. The result is the privacy adversarial network (systemname), a novel deep model with the new training algorithm, that can automatically learn representations from the raw data. Intuitively, PAN adversarially forces the extracted representations to only convey the information required by the target task. Surprisingly, this constitutes an implicit regularization that actually improves task accuracy. As a result, PAN achieves better utility and better privacy at the same time! We report extensive experiments on six popular datasets and demonstrate the superiority of systemname compared with alternative methods reported in prior work.
Aspect-based sentiment analysis (ABSA) mainly involves three subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification, which are typically handled in a separate or joint manner. However, previous approaches do not well exploit the interactive relations among three subtasks and do not pertinently leverage the easily available document-level labeled domain/sentiment knowledge, which restricts their performances. To address these issues, we propose a novel Iterative Multi-Knowledge Transfer Network (IMKTN) for end-to-end ABSA. For one thing, through the interactive correlations between the ABSA subtasks, our IMKTN transfers the task-specific knowledge from any two of the three subtasks to another one at the token level by utilizing a well-designed routing algorithm, that is, any two of the three subtasks will help the third one. For another, our IMKTN pertinently transfers the document-level knowledge, i.e., domain-specific and sentiment-related knowledge, to the aspect-level subtasks to further enhance the corresponding performance. Experimental results on three benchmark datasets demonstrate the effectiveness and superiority of our approach.
294 - Bin He , Di Zhou , Jing Xie 2020
Entities may have complex interactions in a knowledge graph (KG), such as multi-step relationships, which can be viewed as graph contextual information of the entities. Traditional knowledge representation learning (KRL) methods usually treat a singl e triple as a training unit, and neglect most of the graph contextual information exists in the topological structure of KGs. In this study, we propose a Path-based Pre-training model to learn Knowledge Embeddings, called PPKE, which aims to integrate more graph contextual information between entities into the KRL model. Experiments demonstrate that our model achieves state-of-the-art results on several benchmark datasets for link prediction and relation prediction tasks, indicating that our model provides a feasible way to take advantage of graph contextual information in KGs.
Recent advances in information extraction have motivated the automatic construction of huge Knowledge Graphs (KGs) by mining from large-scale text corpus. However, noisy facts are unavoidably introduced into KGs that could be caused by automatic extr action. To validate the correctness of facts (i.e., triplets) inside a KG, one possible approach is to map the triplets into vector representations by capturing the semantic meanings of facts. Although many representation learning approaches have been developed for knowledge graphs, these methods are not effective for validation. They usually assume that facts are correct, and thus may overfit noisy facts and fail to detect such facts. Towards effective KG validation, we propose to leverage an external human-curated KG as auxiliary information source to help detect the errors in a target KG. The external KG is built upon human-curated knowledge repositories and tends to have high precision. On the other hand, although the target KG built by information extraction from texts has low precision, it can cover new or domain-specific facts that are not in any human-curated repositories. To tackle this challenging task, we propose a cross-graph representation learning framework, i.e., CrossVal, which can leverage an external KG to validate the facts in the target KG efficiently. This is achieved by embedding triplets based on their semantic meanings, drawing cross-KG negative samples and estimating a confidence score for each triplet based on its degree of correctness. We evaluate the proposed framework on datasets across different domains. Experimental results show that the proposed framework achieves the best performance compared with the state-of-the-art methods on large-scale KGs.
133 - Pei Ke , Haozhe Ji , Yu Ran 2021
Existing pre-trained models for knowledge-graph-to-text (KG-to-text) generation simply fine-tune text-to-text pre-trained models such as BART or T5 on KG-to-text datasets, which largely ignore the graph structure during encoding and lack elaborate pr e-training tasks to explicitly model graph-text alignments. To tackle these problems, we propose a graph-text joint representation learning model called JointGT. During encoding, we devise a structure-aware semantic aggregation module which is plugged into each Transformer layer to preserve the graph structure. Furthermore, we propose three new pre-training tasks to explicitly enhance the graph-text alignment including respective text / graph reconstruction, and graph-text alignment in the embedding space via Optimal Transport. Experiments show that JointGT obtains new state-of-the-art performance on various KG-to-text datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا