ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Evolved Combinatorial Symbols with a Neuro-symbolic Generative Model

80   0   0.0 ( 0 )
 نشر من قبل Matthias Hofer
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Humans have the ability to rapidly understand rich combinatorial concepts from limited data. Here we investigate this ability in the context of auditory signals, which have been evolved in a cultural transmission experiment to study the emergence of combinatorial structure in language. We propose a neuro-symbolic generative model which combines the strengths of previous approaches to concept learning. Our model performs fast inference drawing on neural network methods, while still retaining the interpretability and generalization from limited data seen in structured generative approaches. This model outperforms a purely neural network-based approach on classification as evaluated against both ground truth and human experimental classification preferences, and produces superior reproductions of observed signals as well. Our results demonstrate the power of flexible combined neural-symbolic architectures for human-like generalization in raw perceptual domains and offers a step towards developing precise computational models of inductive biases in language evolution.

قيم البحث

اقرأ أيضاً

There are two classes of generative art approaches: neural, where a deep model is trained to generate samples from a data distribution, and symbolic or algorithmic, where an artist designs the primary parameters and an autonomous system generates sam ples within these constraints. In this work, we propose a new hybrid genre: neuro-symbolic generative art. As a preliminary study, we train a generative deep neural network on samples from the symbolic approach. We demonstrate through human studies that subjects find the final artifacts and the creation process using our neuro-symbolic approach to be more creative than the symbolic approach 61% and 82% of the time respectively.
Generating some appealing questions in open-domain conversations is an effective way to improve human-machine interactions and lead the topic to a broader or deeper direction. To avoid dull or deviated questions, some researchers tried to utilize ans wer, the future information, to guide question generation. However, they separate a post-question-answer (PQA) triple into two parts: post-question (PQ) and question-answer (QA) pairs, which may hurt the overall coherence. Besides, the QA relationship is modeled as a one-to-one mapping that is not reasonable in open-domain conversations. To tackle these problems, we propose a generative triple-wise model with hierarchical variations for open-domain conversational question generation (CQG). Latent variables in three hierarchies are used to represent the shared background of a triple and one-to-many semantic mappings in both PQ and QA pairs. Experimental results on a large-scale CQG dataset show that our method significantly improves the quality of questions in terms of fluency, coherence and diversity over competitive baselines.
Neural Module Networks (NMNs) have been quite successful in incorporating explicit reasoning as learnable modules in various question answering tasks, including the most generic form of numerical reasoning over text in Machine Reading Comprehension ( MRC). However, to achieve this, contemporary NMNs need strong supervision in executing the query as a specialized program over reasoning modules and fail to generalize to more open-ended settings without such supervision. Hence we propose Weakly-Supervised Neuro-Symbolic Module Network (WNSMN) trained with answers as the sole supervision for numerical reasoning based MRC. It learns to execute a noisy heuristic program obtained from the dependency parsing of the query, as discrete actions over both neural and symbolic reasoning modules and trains it end-to-end in a reinforcement learning framework with discrete reward from answer matching. On the numerical-answer subset of DROP, WNSMN out-performs NMN by 32% and the reasoning-free language model GenBERT by 8% in exact match accuracy when trained under comparable weak supervised settings. This showcases the effectiveness and generalizability of modular networks that can handle explicit discrete reasoning over noisy programs in an end-to-end manner.
365 - Maysum Panju , Ali Ghodsi 2020
When neural networks are used to solve differential equations, they usually produce solutions in the form of black-box functions that are not directly mathematically interpretable. We introduce a method for generating symbolic expressions to solve di fferential equations while leveraging deep learning training methods. Unlike existing methods, our system does not require learning a language model over symbolic mathematics, making it scalable, compact, and easily adaptable for a variety of tasks and configurations. As part of the method, we propose a novel neural architecture for learning mathematical expressions to optimize a customizable objective. The system is designed to always return a valid symbolic formula, generating a useful approximation when an exact analytic solution to a differential equation is not or cannot be found. We demonstrate through examples how our method can be applied on a number of differential equations, often obtaining symbolic approximations that are useful or insightful. Furthermore, we show how the system can be effortlessly generalized to find symbolic solutions to other mathematical tasks, including integration and functional equations.
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points, without forgetting knowledge of old classes. The difficulty lies in that limited data from new clas ses not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems. Moreover, as training data come in sequence in FSCIL, the learned classifier can only provide discriminative information in individual sessions, while FSCIL requires all classes to be involved for evaluation. In this paper, we address the FSCIL problem from two aspects. First, we adopt a simple but effective decoupled learning strategy of representations and classifiers that only the classifiers are updated in each incremental session, which avoids knowledge forgetting in the representations. By doing so, we demonstrate that a pre-trained backbone plus a non-parametric class mean classifier can beat state-of-the-art methods. Second, to make the classifiers learned on individual sessions applicable to all classes, we propose a Continually Evolved Classifier (CEC) that employs a graph model to propagate context information between classifiers for adaptation. To enable the learning of CEC, we design a pseudo incremental learning paradigm that episodically constructs a pseudo incremental learning task to optimize the graph parameters by sampling data from the base dataset. Experiments on three popular benchmark datasets, including CIFAR100, miniImageNet, and Caltech-USCD Birds-200-2011 (CUB200), show that our method significantly outperforms the baselines and sets new state-of-the-art results with remarkable advantages.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا