ترغب بنشر مسار تعليمي؟ اضغط هنا

Exponential decay of mutual information for Gibbs states of local Hamiltonians

169   0   0.0 ( 0 )
 نشر من قبل Antonio P\\'erez Hern\\'andez
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The thermal equilibrium properties of physical systems can be described using Gibbs states. It is therefore of great interest to know when such states allow for an easy description. In particular, this is the case if correlations between distant regions are small. In this work, we consider 1D quantum spin systems with local, finite-range, translation-invariant interactions at any temperature. In this setting, we show that Gibbs states satisfy uniform exponential decay of correlations and, moreover, the mutual information between two regions decays exponentially with their distance, irrespective of the temperature. The methods we use are based on the Belavkin-Staszewski relative entropy and on techniques developed by Araki. Moreover, we find that the Gibbs states of the systems we consider are superexponentially close to saturating the data-processing inequality for the Belavkin-Staszewski relative entropy.



قيم البحث

اقرأ أيضاً

It is commonly claimed that only Hamiltonians with a spectrum unbounded both above and below can give purely exponential decay. Because such Hamiltonians have no ground state, they are considered unphysical. Here we show that Hamiltonians which are b ounded below can give purely exponential decay. This is possible when, instead of looking at the global survival probability, one considers a subsystem only. We conclude that purely exponential decay might not be as unphysical as previously thought.
We prove decomposition rules for quantum Renyi mutual information, generalising the relation $I(A:B) = H(A) - H(A|B)$ to inequalities between Renyi mutual information and Renyi entropy of different orders. The proof uses Beigis generalisation of Reis z-Thorin interpolation to operator norms, and a variation of the argument employed by Dupuis which was used to show chain rules for conditional Renyi entropies. The resulting decomposition rule is then applied to establish an information exclusion relation for Renyi mutual information, generalising the original relation by Hall.
Quantum Fisher information, as an intrinsic quantity for quantum states, is a central concept in quantum detection and estimation. When quantum measurements are performed on quantum states, classical probability distributions arise, which in turn lea d to classical Fisher information. In this article, we exploit the classical Fisher information induced by quantum measurements, and reveal a rich hierarchical structure of such measurement-induced Fisher information. We establish a general framework for the distribution and transfer of the Fisher information. In particular, we illustrate three extremal distribution types of the Fisher information: the locally owned type, the locally inaccessible type, and the fully shared type. Furthermore, we indicate the significant role played by the distribution and flow of the Fisher information in some physical problems, e.g., the non-Markovianity of open quantum processes, the environment-assisted metrology, the cloning and broadcasting, etc.
We investigate the possibility to suppress interactions between a finite dimensional system and an infinite dimensional environment through a fast sequence of unitary kicks on the finite dimensional system. This method, called dynamical decoupling, i s known to work for bounded interactions, but physical environments such as bosonic heat baths are usually modelled with unbounded interactions, whence here we initiate a systematic study of dynamical decoupling for unbounded operators. We develop a sufficient decoupling criterion for arbitrary Hamiltonians and a necessary decoupling criterion for semibounded Hamiltonians. We give examples for unbounded Hamiltonians where decoupling works and the limiting evolution as well as the convergence speed can be explicitly computed. We show that decoupling does not always work for unbounded interactions and provide both physically and mathematically motivated examples.
Traditional quantum physics solves ground states for a given Hamiltonian, while quantum information science asks for the existence and construction of certain Hamiltonians for given ground states. In practical situations, one would be mainly interest ed in local Hamiltonians with certain interaction patterns, such as nearest neighbour interactions on some type of lattices. A necessary condition for a space $V$ to be the ground-state space of some local Hamiltonian with a given interaction pattern, is that the maximally mixed state supported on $V$ is uniquely determined by its reduced density matrices associated with the given pattern, based on the principle of maximum entropy. However, it is unclear whether this condition is in general also sufficient. We examine the situations for the existence of such a local Hamiltonian to have $V$ satisfying the necessary condition mentioned above as its ground-state space, by linking to faces of the convex body of the local reduced states. We further discuss some methods for constructing the corresponding local Hamiltonians with given interaction patterns, mainly from physical points of view, including constructions related to perturbation methods, local frustration-free Hamiltonians, as well as thermodynamical ensembles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا