ترغب بنشر مسار تعليمي؟ اضغط هنا

From Ground States to Local Hamiltonians

159   0   0.0 ( 0 )
 نشر من قبل Duanlu Zhou
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditional quantum physics solves ground states for a given Hamiltonian, while quantum information science asks for the existence and construction of certain Hamiltonians for given ground states. In practical situations, one would be mainly interested in local Hamiltonians with certain interaction patterns, such as nearest neighbour interactions on some type of lattices. A necessary condition for a space $V$ to be the ground-state space of some local Hamiltonian with a given interaction pattern, is that the maximally mixed state supported on $V$ is uniquely determined by its reduced density matrices associated with the given pattern, based on the principle of maximum entropy. However, it is unclear whether this condition is in general also sufficient. We examine the situations for the existence of such a local Hamiltonian to have $V$ satisfying the necessary condition mentioned above as its ground-state space, by linking to faces of the convex body of the local reduced states. We further discuss some methods for constructing the corresponding local Hamiltonians with given interaction patterns, mainly from physical points of view, including constructions related to perturbation methods, local frustration-free Hamiltonians, as well as thermodynamical ensembles.

قيم البحث

اقرأ أيضاً

193 - Lior Eldar , Aram W. Harrow 2015
Ground states of local Hamiltonians can be generally highly entangled: any quantum circuit that generates them (even approximately) must be sufficiently deep to allow coupling (entanglement) between any pair of qubits. Until now this property was not known to be robust - the marginals of such states to a subset of the qubits containing all but a small constant fraction of them may be only locally entangled, and hence approximable by shallow quantum circuits. In this work we construct a family of 16-local Hamiltonians for which any 1-10^{-9} fraction of qubits of any ground state must be highly entangled. This provides evidence that quantum entanglement is not very fragile, and perhaps our intuition about its instability is an artifact of considering local Hamiltonians which are not only local but spatially local. Formally, it provides positive evidence for two wide-open conjectures in condensed-matter physics and quantum complexity theory which are the qLDPC conjecture, positing the existence of good quantum LDPC codes, and the NLTS conjecture due to Freedman and Hastings positing the existence of local Hamiltonians in which any low-energy state is highly-entangled. Our Hamiltonian is based on applying the hypergraph product by Tillich and Zemor to a classical locally testable code. A key tool in our proof is a new lower bound on the vertex expansion of the output of low-depth quantum circuits, which may be of independent interest.
Ground state counting plays an important role in several applications in science and engineering, from estimating residual entropy in physical systems, to bounding engineering reliability and solving combinatorial counting problems. While quantum alg orithms such as adiabatic quantum optimization (AQO) and quantum approximate optimization (QAOA) can minimize Hamiltonians, they are inadequate for counting ground states. We modify AQO and QAOA to count the ground states of arbitrary classical spin Hamiltonians, including counting ground states with arbitrary nonnegative weights attached to them. As a concrete example, we show how our method can be used to count the weighted fraction of edge covers on graphs, with user-specified confidence on the relative error of the weighted count, in the asymptotic limit of large graphs. We find the asymptotic computational time complexity of our algorithms, via analytical predictions for AQO and numerical calculations for QAOA, and compare with the classical optimal Monte Carlo algorithm (OMCS), as well as a modified Grovers algorithm. We show that for large problem instances with small weights on the ground states, AQO does not have a quantum speedup over OMCS for a fixed error and confidence, but QAOA has a sub-quadratic speedup on a broad class of numerically simulated problems. Our work is an important step in approaching general ground-state counting problems beyond those that can be solved with Grovers algorithm. It offers algorithms that can employ noisy intermediate-scale quantum devices for solving ground state counting problems on small instances, which can help in identifying more problem classes with quantum speedups.
In this work, we make a connection between two seemingly different problems. The first problem involves characterizing the properties of entanglement in the ground state of gapped local Hamiltonians, which is a central topic in quantum many-body phys ics. The second problem is on the quantum communication complexity of testing bipartite states with EPR assistance, a well-known question in quantum information theory. We construct a communication protocol for testing (or measuring) the ground state and use its communication complexity to reveal a new structural property for the ground state entanglement. This property, known as the entanglement spread, roughly measures the ratio between the largest and the smallest Schmidt coefficients across a cut in the ground state. Our main result shows that gapped ground states possess limited entanglement spread across any cut, exhibiting an area law behavior. Our result quite generally applies to any interaction graph with an improved bound for the special case of lattices. This entanglement spread area law includes interaction graphs constructed in [Aharonov et al., FOCS14] that violate a generalized area law for the entanglement entropy. Our construction also provides evidence for a conjecture in physics by Li and Haldane on the entanglement spectrum of lattice Hamiltonians [Li and Haldane, PRL08]. On the technical side, we use recent advances in Hamiltonian simulation algorithms along with quantum phase estimation to give a new construction for an approximate ground space projector (AGSP) over arbitrary interaction graphs.
We introduce a framework for constructing a quantum error correcting code from any classical error correcting code. This includes CSS codes and goes beyond the stabilizer formalism to allow quantum codes to be constructed from classical codes that ar e not necessarily linear or self-orthogonal (Fig. 1). We give an algorithm that explicitly constructs quantum codes with linear distance and constant rate from classical codes with a linear distance and rate. As illustrations for small size codes, we obtain Steanes $7-$qubit code uniquely from Hammings [7,4,3] code, and obtain other error detecting quantum codes from other explicit classical codes of length 4 and 6. Motivated by quantum LDPC codes and the use of physics to protect quantum information, we introduce a new 2-local frustration free quantum spin chain Hamiltonian whose ground space we analytically characterize completely. By mapping classical codewords to basis states of the ground space, we utilize our framework to demonstrate that the ground space contains explicit quantum codes with linear distance. This side-steps the Bravyi-Terhal no-go theorem because our work allows for more general quantum codes beyond the stabilizer and/or linear codes. We hesitate to call this an example of {it subspace} quantum LDPC code with linear distance.
The thermal equilibrium properties of physical systems can be described using Gibbs states. It is therefore of great interest to know when such states allow for an easy description. In particular, this is the case if correlations between distant regi ons are small. In this work, we consider 1D quantum spin systems with local, finite-range, translation-invariant interactions at any temperature. In this setting, we show that Gibbs states satisfy uniform exponential decay of correlations and, moreover, the mutual information between two regions decays exponentially with their distance, irrespective of the temperature. The methods we use are based on the Belavkin-Staszewski relative entropy and on techniques developed by Araki. Moreover, we find that the Gibbs states of the systems we consider are superexponentially close to saturating the data-processing inequality for the Belavkin-Staszewski relative entropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا