ﻻ يوجد ملخص باللغة العربية
The Fermilab Muon $g-2$ experiment recently reported its first measurement of the anomalous magnetic moment $a_mu^{textrm{FNAL}}$, which is in full agreement with the previous BNL measurement and pushes the world average deviation $Delta a_mu^{2021}$ from the Standard Model to a significance of $4.2sigma$. Here we provide an extensive survey of its impact on beyond the Standard Model physics. We use state-of-the-art calculations and a sophisticated set of tools to make predictions for $a_mu$, dark matter and LHC searches in a wide range of simple models with up to three new fields, that represent some of the few ways that large $Delta a_mu$ can be explained. In addition for the particularly well motivated Minimal Supersymmetric Standard Model, we exhaustively cover the scenarios where large $Delta a_mu$ can be explained while simultaneously satisfying all relevant data from other experiments. Generally, the $Delta a_mu$ result can only be explained by rather small masses and/or large couplings and enhanced chirality flips, which can lead to conflicts with limits from LHC and dark matter experiments. Our results show that the new measurement excludes a large number of models and provides crucial constraints on others. Two-Higgs doublet and leptoquark models provide viable explanations of $a_mu$ only in specif
Gluino-SUGRA ($tilde{g}$SUGRA), which is an economical extension of mSUGRA, adopts much heavier gluino mass parameter than other gauginos mass parameters and universal scalar mass parameter at the unification scale. It can elegantly reconcile the exp
After a brief review of the muon g-2 status, we discuss hypothetical errors in the Standard Model prediction that might explain the present discrepancy with the experimental value. None of them seems likely. In particular, a hypothetical increase of
After a brief review of the muon g-2 status, we discuss hypothetical errors in the Standard Model prediction that could explain the present discrepancy with the experimental value. None of them looks likely. In particular, an hypothetical increase of
We study the constraints imposed by perturbative unitarity on the new physics interpretation of the muon $g-2$ anomaly. Within a Standard Model Effective Field Theory (SMEFT) approach, we find that scattering amplitudes sourced by effective operators
The new FNAL result of the muon $g-2$, combined with the BNL result, shows a 4.2$sigma$ deviation from the SM. We use the new data of the muon $g-2$ to revisit several GUT-scale constrained SUSY models with the constraints from the LHC searches, the