ترغب بنشر مسار تعليمي؟ اضغط هنا

GUT-scale constrained SUSY in light of E989 muon g-2 measurement

78   0   0.0 ( 0 )
 نشر من قبل Yang Zhang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The new FNAL result of the muon $g-2$, combined with the BNL result, shows a 4.2$sigma$ deviation from the SM. We use the new data of the muon $g-2$ to revisit several GUT-scale constrained SUSY models with the constraints from the LHC searches, the dark matter detection, the flavor data and the electroweak vacuum stability. We first demonstrate the tension between the muon $g-2$ and other experimental measurements in the CMSSM/mSUGRA. Then after discussing the possible ways to alleviate such a tension and showing the muon $g-2$ in pMSSM under relevant experimental constraints, we survey several extensions of the CMSSM/mSUGRA with different types of universal boundary conditions at the GUT scale. Finally, we briefly discuss the muon $g-2$ in other popular SUSY breaking mechanisms, namely the GMSB and AMSB mechanisms and their extensions.

قيم البحث

اقرأ أيضاً

We explore the implications of LHC and cold dark matter searches for supersymmetric particle mass spectra in two different grand unified models with left-right symmetry, $SO(10)$ and $ SU(4)_c times SU(2)_L times SU(2)_R$ (4-2-2). We identify charact eristic differences between the two scenarios, which imply distinct correlations between experimental measurements and the particular structure of the GUT group. The gauge structure of 4-2-2 enhances significantly the allowed parameter space as compared to $SO(10)$, giving rise to a variety of coannihilation scenarios compatible with the LHC data, LSP dark matter and the ongoing muon g-2 experiment.
The recent confirmation by the Fermilab-based Muon g-2 experiment of the $(g-2)_mu$ anomaly has important implications for allowed particle spectra in softly broken supersymmetry (SUSY) models with neutralino dark matter (DM). Generally, the DM has t o be quite light, with the mass up to a few hundred GeV, and bino-dominated if it is to provide most of DM in the Universe. Otherwise, a higgsino or wino dominated DM is also allowed but only as a strongly subdominant component of at most a few percent of the total density. These general patterns can easily be found in the phenomenological models of SUSY but in GUT-constrained scenarios this proves much more challenging. In this paper we revisit the issue in the framework of some unified SUSY models with different GUT boundary conditions on the soft masses. We study the so-called non-universal gaugino model (NUGM) in which the mass of the gluino is disunified from those of the bino and the wino and an SO(10) and an SU(5) GUT-inspired models as examples. We find that in these unified frameworks the above two general patterns of DM can also be found, and thus the muon anomaly can also be accommodated, unlike in the simplest frameworks of the CMSSM or the NUHM. We show the resulting values of direct detection cross-section for points that do and do not satisfy the muon anomaly. On the other hand, it will be challenging to access those solutions at the LHC because the resulting spectra are generally very compressed.
We discuss gauge mediated supersymmetry breaking models which explain the observed muon anomalous magnetic moment and the Higgs boson mass simultaneously. The successful explanation requires the messenger sector which violates the relation motivated by the grand unification theory (GUT). The naive violation of the GUT relation, however, ends up with the CP problem. We propose a model in which the phases of the gaugino masses are aligned despite the violation of the GUT relation. We also consider a model which generates the $mu$-term and the additional Higgs soft masses squared without causing CP violation. As a result, we find a successful model which explains the muon anomalous magnetic moment and the Higgs boson mass. The model is also free from the CP, flavor-changing neutral current and the lepton flavor violation problems caused by the subdominant gravity mediation effects.
The Fermilab Muon $g-2$ experiment recently reported its first measurement of the anomalous magnetic moment $a_mu^{textrm{FNAL}}$, which is in full agreement with the previous BNL measurement and pushes the world average deviation $Delta a_mu^{2021}$ from the Standard Model to a significance of $4.2sigma$. Here we provide an extensive survey of its impact on beyond the Standard Model physics. We use state-of-the-art calculations and a sophisticated set of tools to make predictions for $a_mu$, dark matter and LHC searches in a wide range of simple models with up to three new fields, that represent some of the few ways that large $Delta a_mu$ can be explained. In addition for the particularly well motivated Minimal Supersymmetric Standard Model, we exhaustively cover the scenarios where large $Delta a_mu$ can be explained while simultaneously satisfying all relevant data from other experiments. Generally, the $Delta a_mu$ result can only be explained by rather small masses and/or large couplings and enhanced chirality flips, which can lead to conflicts with limits from LHC and dark matter experiments. Our results show that the new measurement excludes a large number of models and provides crucial constraints on others. Two-Higgs doublet and leptoquark models provide viable explanations of $a_mu$ only in specif
58 - F.E. Gray 2003
The muon (g-2) experiment at Brookhaven National Laboratory has measured the anomalous magnetic moment of the positive muon with a precision of 0.7 ppm. This paper presents that result, concentrating on some of the important experimental issues that arise in extracting the anomalous precession frequency from the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا