ﻻ يوجد ملخص باللغة العربية
Scientific knowledge cannot be seen as a set of isolated fields, but as a highly connected network. Understanding how research areas are connected is of paramount importance for adequately allocating funding and human resources (e.g., assembling teams to tackle multidisciplinary problems). The relationship between disciplines can be drawn from data on the trajectory of individual scientists, as researchers often make contributions in a small set of interrelated areas. Two recent works propose methods for creating research maps from scientists publication records: by using a frequentist approach to create a transition probability matrix; and by learning embeddings (vector representations). Surprisingly, these models were evaluated on different datasets and have never been compared in the literature. In this work, we compare both models in a systematic way, using a large dataset of publication records from Brazilian researchers. We evaluate these models ability to predict whether a given entity (scientist, institution or region) will enter a new field w.r.t. the area under the ROC curve. Moreover, we analyze how sensitive each method is to the number of publications and the number of fields associated to one entity. Last, we conduct a case study to showcase how these models can be used to characterize science dynamics in the context of Brazil.
In this study, we apply co-word analysis - a text mining technique based on the co-occurrence of terms - to map the topology of software testing research topics, with the goal of providing current and prospective researchers with a map, and observati
As a part of science of science (SciSci) research, the evolution of scientific disciplines has been attracting a great deal of attention recently. This kind of discipline level analysis not only give insights of one particular field but also shed lig
Evaluating the inherent difficulty of a given data-driven classification problem is important for establishing absolute benchmarks and evaluating progress in the field. To this end, a natural quantity to consider is the emph{Bayes error}, which measu
The Open Research Knowledge Graph (ORKG) provides machine-actionable access to scholarly literature that habitually is written in prose. Following the FAIR principles, the ORKG makes traditional, human-coded knowledge findable, accessible, interopera
In the era of big science, countries allocate big research and development budgets to large scientific facilities that boost collaboration and research capability. A nuclear fusion device called the tokamak is a source of great interest for many coun