ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluating the state-of-the-art in mapping research spaces: a Brazilian case study

64   0   0.0 ( 0 )
 نشر من قبل Fabricio Murai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Scientific knowledge cannot be seen as a set of isolated fields, but as a highly connected network. Understanding how research areas are connected is of paramount importance for adequately allocating funding and human resources (e.g., assembling teams to tackle multidisciplinary problems). The relationship between disciplines can be drawn from data on the trajectory of individual scientists, as researchers often make contributions in a small set of interrelated areas. Two recent works propose methods for creating research maps from scientists publication records: by using a frequentist approach to create a transition probability matrix; and by learning embeddings (vector representations). Surprisingly, these models were evaluated on different datasets and have never been compared in the literature. In this work, we compare both models in a systematic way, using a large dataset of publication records from Brazilian researchers. We evaluate these models ability to predict whether a given entity (scientist, institution or region) will enter a new field w.r.t. the area under the ROC curve. Moreover, we analyze how sensitive each method is to the number of publications and the number of fields associated to one entity. Last, we conduct a case study to showcase how these models can be used to characterize science dynamics in the context of Brazil.



قيم البحث

اقرأ أيضاً

In this study, we apply co-word analysis - a text mining technique based on the co-occurrence of terms - to map the topology of software testing research topics, with the goal of providing current and prospective researchers with a map, and observati ons about the evolution, of the software testing field. Our analysis enables the mapping of software testing research into clusters of connected topics, from which emerge a total of 16 high-level research themes and a further 18 subthemes. This map also suggests topics that are growing in importance, including topics related to web and mobile applications and artificial intelligence. Exploration of author and country-based collaboration patterns offers similar insight into the implicit and explicit factors that influence collaboration and suggests emerging sources of collaboration for future work. We make our observations - and the underlying mapping of research topics and research collaborations - available so that researchers can gain a deeper understanding of the topology of the software testing field, inspiration regarding new areas and connections to explore, and collaborators who will broaden their perspectives.
As a part of science of science (SciSci) research, the evolution of scientific disciplines has been attracting a great deal of attention recently. This kind of discipline level analysis not only give insights of one particular field but also shed lig ht on general principles of scientific enterprise. In this paper we focus on graphene research, a fast growing field covers both theoretical and applied study. Using co-clustering method, we split graphene literature into two groups and confirm that one group is about theoretical research (T) and another corresponds to applied research (A). We analyze the proportion of T/A and found applied research becomes more and more popular after 2007. Geographical analysis demonstrated that countries have different preference in terms of T/A and they reacted differently to research trend. The interaction between two groups has been analyzed and shows that T extremely relies on T and A heavily relies on A, however the situation is very stable for T but changed markedly for A. No geographic difference is found for the interaction dynamics. Our results give a comprehensive picture of graphene research evolution and also provide a general framework which is able to analyze other disciplines.
Evaluating the inherent difficulty of a given data-driven classification problem is important for establishing absolute benchmarks and evaluating progress in the field. To this end, a natural quantity to consider is the emph{Bayes error}, which measu res the optimal classification error theoretically achievable for a given data distribution. While generally an intractable quantity, we show that we can compute the exact Bayes error of generative models learned using normalizing flows. Our technique relies on a fundamental result, which states that the Bayes error is invariant under invertible transformation. Therefore, we can compute the exact Bayes error of the learned flow models by computing it for Gaussian base distributions, which can be done efficiently using Holmes-Diaconis-Ross integration. Moreover, we show that by varying the temperature of the learned flow models, we can generate synthetic datasets that closely resemble standard benchmark datasets, but with almost any desired Bayes error. We use our approach to conduct a thorough investigation of state-of-the-art classification models, and find that in some -- but not all -- cases, these models are capable of obtaining accuracy very near optimal. Finally, we use our method to evaluate the intrinsic hardness of standard benchmark datasets, and classes within those datasets.
The Open Research Knowledge Graph (ORKG) provides machine-actionable access to scholarly literature that habitually is written in prose. Following the FAIR principles, the ORKG makes traditional, human-coded knowledge findable, accessible, interopera ble, and reusable in a structured manner in accordance with the Linked Open Data paradigm. At the moment, in ORKG papers are described manually, but in the long run the semantic depth of the literature at scale needs automation. Operational Research is a suitable test case for this vision because the mathematical field and, hence, its publication habits are highly structured: A mundane problem is formulated as a mathematical model, solved or approximated numerically, and evaluated systematically. We study the existing literature with respect to the Assembly Line Balancing Problem and derive a semantic description in accordance with the ORKG. Eventually, selected papers are ingested to test the semantic description and refine it further.
In the era of big science, countries allocate big research and development budgets to large scientific facilities that boost collaboration and research capability. A nuclear fusion device called the tokamak is a source of great interest for many coun tries because it ideally generates sustainable energy expected to solve the energy crisis in the future. Here, to explore the scientific effects of tokamaks, we map a countrys research capability in nuclear fusion research with normalized revealed comparative advantage on five topical clusters -- material, plasma, device, diagnostics, and simulation -- detected through a dynamic topic model. Our approach captures not only the growth of China, India, and the Republic of Korea but also the decline of Canada, Japan, Sweden, and the Netherlands. Time points of their rise and fall are related to tokamak operation, highlighting the importance of large facilities in big science. The gravity model points out that two countries collaborate less in device, diagnostics, and plasma research if they have comparative advantages in different topics. This relation is a unique feature of nuclear fusion compared to other science fields. Our results can be used and extended when building national policies for big science.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا