ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid Relay-Reflecting Intelligent Surface-Aided Wireless Communications: Opportunities, Challenges, and Future Perspectives

252   0   0.0 ( 0 )
 نشر من قبل Nhan Thanh Nguyen
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reconfigurable intelligent surfaces (RISs) have emerged as a cost- and energy-efficient technology that can customize and program the physical propagation environment by reflecting radio waves in preferred directions. However, the purely passive reflection of RISs not only limits the end-to-end channel beamforming gains, but also hinders the acquisition of accurate channel state information for the phase control at RISs. In this paper, we provide an overview of a hybrid relay-reflecting intelligent surface (HR-RIS) architecture, in which only a few elements are active and connected to power amplifiers and radio frequency chains. The introduction of a small number of active elements enables a remarkable system performance improvement which can also compensate for losses due to hardware impairments such as the deployment of limited-resolution phase shifters. Particularly, the active processing facilitates efficient channel estimation and localization at HR-RISs. We present two practical architectures for HR-RISs, namely, fixed and dynamic HR-RISs, and discuss their applications to beamforming, channel estimation, and localization. The benefits, key challenges, and future research directions for HR-RIS-aided communications are also highlighted. Numerical results for an exemplary deployment scenario show that HR-RISs with only four active elements can attain up to 42.8 percent and 41.8 percent improvement in spectral efficiency and energy efficiency, respectively, compared with conventional RISs.


قيم البحث

اقرأ أيضاً

Broadband access is key to ensuring robust economic development and improving quality of life. Unfortunately, the communication infrastructure deployed in rural areas throughout the world lags behind its urban counterparts due to low population densi ty and economics. This article examines the motivations and challenges of providing broadband access over vast rural regions, with an emphasis on the wireless aspect in view of its irreplaceable role in closing the digital gap. Applications and opportunities for future rural wireless communications are discussed for a variety of areas, including residential welfare, digital agriculture, and transportation. This article also comprehensively investigates current and emerging wireless technologies that could facilitate rural deployment. Although there is no simple solution, there is an urgent need for researchers to work on coverage, cost, and reliability of rural wireless access.
This paper investigates an intelligent reflecting surface (IRS) aided cooperative communication network, where the IRS exploits large reflecting elements to proactively steer the incident radio-frequency wave towards destination terminals (DTs). As t he number of reflecting elements increases, the reflection resource allocation (RRA) will become urgently needed in this context, which is due to the non-ignorable energy consumption. The goal of this paper, therefore, is to realize the RRA besides the active-passive beamforming design, where RRA is based on the introduced modular IRS architecture. The modular IRS consists with multiple modules, each of which has multiple reflecting elements and is equipped with a smart controller, all the controllers can communicate with each other in a point-to-point fashion via fiber links. Consequently, an optimization problem is formulated to maximize the minimum SINR at DTs, subject to the module size constraint and both individual source terminal (ST) transmit power and the reflecting coefficients constraints. Whereas this problem is NP-hard due to the module size constraint, we develop an approximate solution by introducing the mixed row block $ell_{1,F}$-norm to transform it into a suitable semidefinite relaxation. Finally, numerical results demonstrate the meaningfulness of the introduced modular IRS architecture.
5G wireless communications technology is being launched, with many smart applications being integrated. However, 5G specifications merge the requirements of new emerging technologies forcefully. These include data rate, capacity, latency, reliability , resources sharing, and energy/bit. To meet these challenging demands, research is focusing on 6G wireless communications enabling different technologies and emerging new applications. In this report, the latest research work on 6G technologies and applications is summarized, and the associated research challenges are discussed.
362 - Gaofeng Pan , Jia Ye , Jianping An 2020
Full-duplex (FD) transmission has already been regarded and developed as a promising method to improve the utilization efficiency of the limited spectrum resource, as transmitting and receiving are allowed to simultaneously occur on the same frequenc y band. Nowadays, benefiting from the recent development of intelligent reflecting surface (IRS), some unique electromagnetic (EM) functionalities, like wavefront shaping, focusing, anomalous reflection, absorption, frequency shifting, and nonreciprocity can be realized by soft-controlled elements at the IRS, showing the capability of reconfiguring the wireless propagation environment with no hardware cost and nearly zero energy consumption. To jointly exploit the virtues of both FD transmission and IRS, in this article we first introduce several EM functionalities of IRS that are profitable for FD transmission; then, some designs of FD-enabled IRS systems are proposed and discussed, followed by numerical results to demonstrate the obtained benefits. Finally, the challenges and open problems of realizing FD-enabled IRS systems are outlined and elaborated upon.
We introduce a novel system setup where a backscatter device operates in the presence of an intelligent reflecting surface (IRS). In particular, we study the bistatic backscatter communication (BackCom) system assisted by an IRS. The phase shifts at the IRS are optimized jointly with the transmit beamforming vector of the carrier emitter to minimize the transmit power consumption at the carrier emitter whilst guaranteeing a required BackCom performance. The unique channel characteristics arising from multiple reflections at the IRS render the optimization problem highly non-convex. Therefore, we jointly utilize the minorization-maximization algorithm and the semidefinite relaxation technique to present an approximate solution for the optimal IRS phase shift design. We also extend our analytical results to the monostatic BackCom system. Numerical results indicate that the introduction of the IRS brings about considerable reductions in transmit power, even with moderate IRS sizes, which can be translated to range increases over the non-IRS-assisted BackCom system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا