ﻻ يوجد ملخص باللغة العربية
Detection of gamma-rays emitted by radioactive isotopes synthesized in stellar explosions can give important insights into the processes that power transients such as supernovae, as well as providing a detailed census of the abundance of different isotope species relevant to the chemical evolution of the Universe. Observations of nearby supernovae have yielded observational proof that $^{57}$Co powered the late-time evolution of SN1987As lightcurve, and conclusive evidence that $^{56}$Ni and its daughter nuclei power the light curves of Type Ia supernovae. In this paper we describe the prospects for detecting nuclear decay lines associated with the decay of $^{48}$V, the daughter nucleus of $^{48}$Cr, which is expected to be synthesised in large quantities - $M_{mathrm{Cr}}sim1.9times10^{-2},mathrm{M_odot}$ - in transients initiated by explosive helium burning ($alpha$-capture) of a thick helium shell. We calculate emergent gamma-ray line fluxes for a simulated explosion model of a thermonuclear explosion of carbon-oxygen white dwarf core of mass $0.45,M_{odot}$ surrounded by a thick helium layer of mass $0.21,M_{odot}$. We present observational limits on the presence of $^{48}$V in nearby SNe Ia 2014J using the textit{INTEGRAL} space telescope, excluding a $^{48}$Cr production on the surface of more than $0.1,mathrm{M_{odot}}$. We find that the future gamma-ray mission AMEGO will have an approximately 5 per cent chance of observing $^{48}$V gamma-rays from such events during the currently-planned operational lifetime, based on our birthrate predictions of faint thermonuclear transients. We describe the conditions for a $3sigma$ detection by the gamma-ray telescopes textit{INTEGRAL}/SPI, COSI and AMEGO.
We use the Fermi-LAT gamma-ray observatory to search for gamma-ray emission from four nearby, debris disk-hosting main sequence stars: $tau$ Ceti, $epsilon$ Eridani, Fomalhaut, and Vega. For three stars ($tau$ Ceti, Fomalhaut, and Vega), we establish
We perform multi-dimensional, time-dependent radiation transfer simulations for hard X-ray and gamma-ray emissions, following radioactive decays of 56Ni and 56Co, for two-dimensional delayed detonation models of Type Ia supernovae (SNe Ia). The synth
Recent theoretical predictions of the lowest very high energy (VHE) luminosity of SN 1006 are only a factor 5 below the previously published H.E.S.S. upper limit, thus motivating further in-depth observations of this source. Deep observations at VHE
We report the detection of pulsed gamma rays from the Crab pulsar at energies above 100 Gigaelectronvolts (GeV) with the VERITAS array of atmospheric Cherenkov telescopes. The detection cannot be explained on the basis of current pulsar models. The p
The details of what constitutes the majority of the mass that makes up dark matter in the Universe remains one of the prime puzzles of cosmology and particle physics today - eighty years after the first observational indications. Today, it is widely