ﻻ يوجد ملخص باللغة العربية
We use the Fermi-LAT gamma-ray observatory to search for gamma-ray emission from four nearby, debris disk-hosting main sequence stars: $tau$ Ceti, $epsilon$ Eridani, Fomalhaut, and Vega. For three stars ($tau$ Ceti, Fomalhaut, and Vega), we establish upper limits that are consistent with theoretical expectations. For $epsilon$ Eridani, we find a possible spatially coincident source with a soft energy spectrum of $dN/dE sim E^{-3.6}$. However, at this stage we are unable to rule out that this emission is due to a more extended feature in the diffuse background. In the interpretation that the emission is due to $epsilon$ Eridani, the $> 100$ MeV gamma-ray luminosity is $sim 10^{27}$ erg/s $simeq 3times 10^{-7}$ L$_odot$, which is $sim 10^{10}$ times the gamma-ray luminosity from the disk of the quiet Sun. We find $lesssim 2 sigma$ evidence of source variability over a $sim 7$ year timescale. In the interpretation that the gamma-ray emission from $epsilon$ Eridani itself, we consider two possible models: 1) cosmic-ray collisions with solid bodies in the debris disk which extends out $sim$60 AU from the host star, and 2) emission from the stellar activity. For the former model, assuming a total disk mass consistent with infrared measurements, we find that the size distribution of bodies is steeper than expected for a collisional cascade state. If confirmed as being associated with $epsilon$ Eridani, this would be the first indication of gamma-ray emission from the vicinity of a main sequence star other than the Sun.
The nearby star $rm epsilon Eridani$ has been a frequent target of radio surveys for stellar emission and extraterrestial intelligence. Using deep $rm 2-4 GHz$ observations with the Very Large Array, we have uncovered a $29 mu {rm Jy}$ compact, st
A recently observed bump in the cosmic ray (CR) spectrum from 0.3--30 TV is likely caused by a stellar bow shock that reaccelerates emph{preexisting} CRs, which further propagate to the Sun along the magnetic field lines. Along their way, these parti
As part of a wider search for radio emission from nearby systems known or suspected to contain extrasolar planets $epsilon$ Eridani was observed by the Jansky Very Large Array (VLA) in the 2-4 GHz and 4-8 GHz frequency bands. In addition, as part of
Recent theoretical predictions of the lowest very high energy (VHE) luminosity of SN 1006 are only a factor 5 below the previously published H.E.S.S. upper limit, thus motivating further in-depth observations of this source. Deep observations at VHE
Detection of gamma-rays emitted by radioactive isotopes synthesized in stellar explosions can give important insights into the processes that power transients such as supernovae, as well as providing a detailed census of the abundance of different is