ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph Intention Network for Click-through Rate Prediction in Sponsored Search

87   0   0.0 ( 0 )
 نشر من قبل Feng Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Estimating click-through rate (CTR) accurately has an essential impact on improving user experience and revenue in sponsored search. For CTR prediction model, it is necessary to make out user real-time search intention. Most of the current work is to mine their intentions based on user real-time behaviors. However, it is difficult to capture the intention when user behaviors are sparse, causing the behavior sparsity problem. Moreover, it is difficult for user to jump out of their specific historical behaviors for possible interest exploration, namely weak generalization problem. We propose a new approach Graph Intention Network (GIN) based on co-occurrence commodity graph to mine user intention. By adopting multi-layered graph diffusion, GIN enriches user behaviors to solve the behavior sparsity problem. By introducing co-occurrence relationship of commodities to explore the potential preferences, the weak generalization problem is also alleviated. To the best of our knowledge, the GIN method is the first to introduce graph learning for user intention mining in CTR prediction and propose end-to-end joint training of graph learning and CTR prediction tasks in sponsored search. At present, GIN has achieved excellent offline results on the real-world data of the e-commerce platform outperforming existing deep learning models, and has been running stable tests online and achieved significant CTR improvements.



قيم البحث

اقرأ أيضاً

Click-through rate (CTR) prediction is a critical task in online advertising systems. Most existing methods mainly model the feature-CTR relationship and suffer from the data sparsity issue. In this paper, we propose DeepMCP, which models other types of relationships in order to learn more informative and statistically reliable feature representations, and in consequence to improve the performance of CTR prediction. In particular, DeepMCP contains three parts: a matching subnet, a correlation subnet and a prediction subnet. These subnets model the user-ad, ad-ad and feature-CTR relationship respectively. When these subnets are jointly optimized under the supervision of the target labels, the learned feature representations have both good prediction powers and good representation abilities. Experiments on two large-scale datasets demonstrate that DeepMCP outperforms several state-of-the-art models for CTR prediction.
Click-through rate (CTR) prediction is a critical task in online advertising systems. Models like Deep Neural Networks (DNNs) are simple but stateless. They consider each target ad independently and cannot directly extract useful information containe d in users historical ad impressions and clicks. In contrast, models like Recurrent Neural Networks (RNNs) are stateful but complex. They model temporal dependency between users sequential behaviors and can achieve improved prediction performance than DNNs. However, both the offline training and online prediction process of RNNs are much more complex and time-consuming. In this paper, we propose Memory Augmented DNN (MA-DNN) for practical CTR prediction services. In particular, we create two external memory vectors for each user, memorizing high-level abstractions of what a user possibly likes and dislikes. The proposed MA-DNN achieves a good compromise between DNN and RNN. It is as simple as DNN, but has certain ability to exploit useful information contained in users historical behaviors as RNN. Both offline and online experiments demonstrate the effectiveness of MA-DNN for practical CTR prediction services. Actually, the memory component can be augmented to other models as well (e.g., the Wide&Deep model).
Click-Through Rate prediction is an important task in recommender systems, which aims to estimate the probability of a user to click on a given item. Recently, many deep models have been proposed to learn low-order and high-order feature interactions from original features. However, since useful interactions are always sparse, it is difficult for DNN to learn them effectively under a large number of parameters. In real scenarios, artificial features are able to improve the performance of deep models (such as Wide & Deep Learning), but feature engineering is expensive and requires domain knowledge, making it impractical in different scenarios. Therefore, it is necessary to augment feature space automatically. In this paper, We propose a novel Feature Generation by Convolutional Neural Network (FGCNN) model with two components: Feature Generation and Deep Classifier. Feature Generation leverages the strength of CNN to generate local patterns and recombine them to generate new features. Deep Classifier adopts the structure of IPNN to learn interactions from the augmented feature space. Experimental results on three large-scale datasets show that FGCNN significantly outperforms nine state-of-the-art models. Moreover, when applying some state-of-the-art models as Deep Classifier, better performance is always achieved, showing the great compatibility of our FGCNN model. This work explores a novel direction for CTR predictions: it is quite useful to reduce the learning difficulties of DNN by automatically identifying important features.
Click-through rate (CTR) prediction is a critical task in online advertising systems. Existing works mainly address the single-domain CTR prediction problem and model aspects such as feature interaction, user behavior history and contextual informati on. Nevertheless, ads are usually displayed with natural content, which offers an opportunity for cross-domain CTR prediction. In this paper, we address this problem and leverage auxiliary data from a source domain to improve the CTR prediction performance of a target domain. Our study is based on UC Toutiao (a news feed service integrated with the UC Browser App, serving hundreds of millions of users daily), where the source domain is the news and the target domain is the ad. In order to effectively leverage news data for predicting CTRs of ads, we propose the Mixed Interest Network (MiNet) which jointly models three types of user interest: 1) long-term interest across domains, 2) short-term interest from the source domain and 3) short-term interest in the target domain. MiNet contains two levels of attentions, where the item-level attention can adaptively distill useful information from clicked news / ads and the interest-level attention can adaptively fuse different interest representations. Offline experiments show that MiNet outperforms several state-of-the-art methods for CTR prediction. We have deployed MiNet in UC Toutiao and the A/B test results show that the online CTR is also improved substantially. MiNet now serves the main ad traffic in UC Toutiao.
Click-through rate (CTR) prediction is one of the most central tasks in online advertising systems. Recent deep learning-based models that exploit feature embedding and high-order data nonlinearity have shown dramatic successes in CTR prediction. How ever, these models work poorly on cold-start ads with new IDs, whose embeddings are not well learned yet. In this paper, we propose Graph Meta Embedding (GME) models that can rapidly learn how to generate desirable initial embeddings for new ad IDs based on graph neural networks and meta learning. Previous works address this problem from the new ad itself, but ignore possibly useful information contained in existing old ads. In contrast, GMEs simultaneously consider two information sources: the new ad and existing old ads. For the new ad, GMEs exploit its associated attributes. For existing old ads, GMEs first build a graph to connect them with new ads, and then adaptively distill useful information. We propose three specific GMEs from different perspectives to explore what kind of information to use and how to distill information. In particular, GME-P uses Pre-trained neighbor ID embeddings, GME-G uses Generated neighbor ID embeddings and GME-A uses neighbor Attributes. Experimental results on three real-world datasets show that GMEs can significantly improve the prediction performance in both cold-start (i.e., no training data is available) and warm-up (i.e., a small number of training samples are collected) scenarios over five major deep learning-based CTR prediction models. GMEs can be applied to conversion rate (CVR) prediction as well.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا