ﻻ يوجد ملخص باللغة العربية
The Apery numbers $A_n$ and the Franel numbers $f_n$ are defined by $$A_n=sum_{k=0}^{n}{binom{n+k}{2k}}^2{binom{2k}{k}}^2 {rm and } f_n=sum_{k=0}^{n}{binom{n}{k}}^3(n=0, 1, cdots,).$$ In this paper, we prove three supercongruences for Apery numbers or Franel numbers conjectured by Z.-W. Sun. Let $pgeq 5$ be a prime and let $nin mathbb{Z}^{+}$. We show that begin{align} otag frac{1}{n}bigg(sum_{k=0}^{pn-1}(2k+1)A_k-psum_{k=0}^{n-1}(2k+1)A_kbigg)equiv0pmod{p^{4+3 u_p(n)}} end{align} and begin{align} otag frac{1}{n^3}bigg(sum_{k=0}^{pn-1}(2k+1)^3A_k-p^3sum_{k=0}^{n-1}(2k+1)^3A_kbigg)equiv0pmod{p^{6+3 u_p(n)}}, end{align} where $ u_p(n)$ denotes the $p$-adic order of $n$. Also, for any prime $p$ we have begin{align} otag frac{1}{n^3}bigg(sum_{k=0}^{pn-1}(3k+2)(-1)^kf_k-p^2sum_{k=0}^{n-1}(3k+2)(-1)^kf_kbigg)equiv0pmod{p^{3}}. end{align}
Let $E_n$ be the $n$-th Euler number and $(a)_n=a(a+1)cdots (a+n-1)$ the rising factorial. Let $p>3$ be a prime. In 2012, Sun proved the that $$ sum^{(p-1)/2}_{k=0}(-1)^k(4k+1)frac{(frac{1}{2})_k^3}{k!^3} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $
The sequence $A(n)_{n geq 0}$ of Apery numbers can be interpolated to $mathbb{C}$ by an entire function. We give a formula for the Taylor coefficients of this function, centered at the origin, as a $mathbb{Z}$-linear combination of multiple zeta valu
Let $p$ be a prime with $p>3$, and let $a,b$ be two rational $p-$integers. In this paper we present general congruences for $sum_{k=0}^{p-1}binom akbinom{-1-a}kfrac p{k+b}pmod {p^2}$. For $n=0,1,2,ldots$ let $D_n$ and $b_n$ be Domb and Almkvist-Zudil
It was discovered some years ago that there exist non-integer real numbers $q>1$ for which only one sequence $(c_i)$ of integers $c_i in [0,q)$ satisfies the equality $sum_{i=1}^infty c_iq^{-i}=1$. The set of such univoque numbers has a rich topologi
In this note, we extend the definition of multiple harmonic sums and apply their stuffle relations to obtain explicit evaluations of the sums $R_n(p,t)=sum olimits_{m=0}^n m^p H_m^t$, where $H_m$ are harmonic numbers. When $tle 4$ these sums were fir