ترغب بنشر مسار تعليمي؟ اضغط هنا

Three supercongruences for Apery numbers or Franel numbers

164   0   0.0 ( 0 )
 نشر من قبل Yong Zhang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Yong Zhang




اسأل ChatGPT حول البحث

The Apery numbers $A_n$ and the Franel numbers $f_n$ are defined by $$A_n=sum_{k=0}^{n}{binom{n+k}{2k}}^2{binom{2k}{k}}^2 {rm and } f_n=sum_{k=0}^{n}{binom{n}{k}}^3(n=0, 1, cdots,).$$ In this paper, we prove three supercongruences for Apery numbers or Franel numbers conjectured by Z.-W. Sun. Let $pgeq 5$ be a prime and let $nin mathbb{Z}^{+}$. We show that begin{align} otag frac{1}{n}bigg(sum_{k=0}^{pn-1}(2k+1)A_k-psum_{k=0}^{n-1}(2k+1)A_kbigg)equiv0pmod{p^{4+3 u_p(n)}} end{align} and begin{align} otag frac{1}{n^3}bigg(sum_{k=0}^{pn-1}(2k+1)^3A_k-p^3sum_{k=0}^{n-1}(2k+1)^3A_kbigg)equiv0pmod{p^{6+3 u_p(n)}}, end{align} where $ u_p(n)$ denotes the $p$-adic order of $n$. Also, for any prime $p$ we have begin{align} otag frac{1}{n^3}bigg(sum_{k=0}^{pn-1}(3k+2)(-1)^kf_k-p^2sum_{k=0}^{n-1}(3k+2)(-1)^kf_kbigg)equiv0pmod{p^{3}}. end{align}

قيم البحث

اقرأ أيضاً

170 - Victor J. W. Guo 2020
Let $E_n$ be the $n$-th Euler number and $(a)_n=a(a+1)cdots (a+n-1)$ the rising factorial. Let $p>3$ be a prime. In 2012, Sun proved the that $$ sum^{(p-1)/2}_{k=0}(-1)^k(4k+1)frac{(frac{1}{2})_k^3}{k!^3} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $ $ which is a refinement of a famous supercongruence of Van Hamme. In 2016, Chen, Xie, and He established the following result: $$ sum_{k=0}^{p-1}(-1)^k (3k+1)frac{(frac{1}{2})_k^3}{k!^3} 2^{3k} equiv p(-1)^{(p-1)/2}+p^3E_{p-3} pmod{p^4}, $$ which was originally conjectured by Sun. In this paper we give $q$-analogues of the above two supercongruences by employing the $q$-WZ method. As a conclusion, we provide a $q$-analogue of the following supercongruence of Sun: $$ sum_{k=0}^{(p-1)/2}frac{(frac{1}{2})_k^2}{k!^2} equiv (-1)^{(p-1)/2}+p^2 E_{p-3} pmod{p^3}. $$
The sequence $A(n)_{n geq 0}$ of Apery numbers can be interpolated to $mathbb{C}$ by an entire function. We give a formula for the Taylor coefficients of this function, centered at the origin, as a $mathbb{Z}$-linear combination of multiple zeta valu es. We then show that for integers $n$ whose base-$p$ digits belong to a certain set, $A(n)$ satisfies a Lucas congruence modulo $p^2$.
101 - Zhi-Hong Sun 2020
Let $p$ be a prime with $p>3$, and let $a,b$ be two rational $p-$integers. In this paper we present general congruences for $sum_{k=0}^{p-1}binom akbinom{-1-a}kfrac p{k+b}pmod {p^2}$. For $n=0,1,2,ldots$ let $D_n$ and $b_n$ be Domb and Almkvist-Zudil in numbers, respectively. We also establish congruences for $$sum_{n=0}^{p-1}frac{D_n}{16^n},quad sum_{n=0}^{p-1}frac{D_n}{4^n}, quad sum_{n=0}^{p-1}frac{b_n}{(-3)^n},quad sum_{n=0}^{p-1}frac{b_n}{(-27)^n}pmod {p^2}$$ in terms of certain binary quadratic forms.
104 - Martijn de Vries 2006
It was discovered some years ago that there exist non-integer real numbers $q>1$ for which only one sequence $(c_i)$ of integers $c_i in [0,q)$ satisfies the equality $sum_{i=1}^infty c_iq^{-i}=1$. The set of such univoque numbers has a rich topologi cal structure, and its study revealed a number of unexpected connections with measure theory, fractals, ergodic theory and Diophantine approximation. In this paper we consider for each fixed $q>1$ the set $mathcal{U}_q$ of real numbers $x$ having a unique representation of the form $sum_{i=1}^infty c_iq^{-i}=x$ with integers $c_i$ belonging to $[0,q)$. We carry out a detailed topological study of these sets. For instance, we characterize their closures, and we determine those bases $q$ for which $mathcal{U}_q$ is closed or even a Cantor set. We also study the set $mathcal{U}_q$ consisting of all sequences $(c_i)$ of integers $c_i in [0,q)$ such that $sum_{i=1}^{infty} c_i q^{-i} in mathcal{U}_q$. We determine the numbers $r >1$ for which the map $q mapsto mathcal{U}_q$ (defined on $(1, infty)$) is constant in a neighborhood of $r$ and the numbers $q >1$ for which $mathcal{U}_q$ is a subshift or a subshift of finite type.
In this note, we extend the definition of multiple harmonic sums and apply their stuffle relations to obtain explicit evaluations of the sums $R_n(p,t)=sum olimits_{m=0}^n m^p H_m^t$, where $H_m$ are harmonic numbers. When $tle 4$ these sums were fir st studied by Spiess around 1990 and, more recently, by Jin and Sun. Our key step first is to find an explicit formula of a special type of the extended multiple harmonic sums. This also enables us to provide a general structural result of the sums $R_n(p,t)$ for all $tge 0$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا